Show simple item record

dc.contributor.authorSacconi F
dc.contributor.authorDi Carlo A
dc.contributor.authorLugli P
dc.contributor.authorStädele M
dc.contributor.authorJancu J
dc.contributor.editor
dc.date.accessioned2019-05-22T13:32:53Z
dc.date.available2019-05-22T13:32:53Z
dc.date.issued2004
dc.identifier.issn0018-9383
dc.identifier.urihttp://dx.doi.org/10.1109/TED.2004.826862
dc.identifier.urihttp://ieeexplore.ieee.org/abstract/document/1303833/
dc.identifier.urihttp://hdl.handle.net/10863/9813
dc.description.abstractUsing atomistic quantum mechanical tight-binding (TB) methods that include the full band structure, we study electron tunneling through three-dimensional models of n -Si/SiO /p-Si capacitors with thicknesses between 0.7 and 4.4 nm. We find that the microscopic oxide structure influences transmission coefficients and tunnel currents significantly. The best agreement with experimental current-thickness and current-voltage data is obtained for a model derived from the β-cristobalite polytype of SiO that has a fairly small conduction band mass of 0.34 m . Standard approximate effective mass-based methods reproduce the TB results only if an energy and oxide thickness dependence of the mass parameter is introduced.en_US
dc.languageEnglish
dc.language.isoenen_US
dc.relation
dc.rights
dc.subjectMetal-oxide-semiconductor (MOS)en_US
dc.subjectTight-binding (TB) full band simulationsen_US
dc.subjectTunnelingen_US
dc.titleFull band approach to tunneling in MOS structuresen_US
dc.typeArticleen_US
dc.date.updated2019-05-22T03:00:16Z
dc.publication.title
dc.language.isiEN-GB
dc.journal.titleIEEE Transactions on Electron Devices
dc.description.fulltextreserveden_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record