Show simple item record

dc.contributor.authorCarpentieri B
dc.contributor.authorJing YF
dc.contributor.authorHuang TZ
dc.date.accessioned2018-08-09T09:15:59Z
dc.date.available2018-08-09T09:15:59Z
dc.date.issued2010
dc.identifier.issn1070-4698
dc.identifier.urihttp://dx.doi.org/10.2528/PIER10072204
dc.identifier.urihttp://ww.jpier.org/PIER/pier.php?paper=10072204
dc.identifier.urihttp://hdl.handle.net/10863/5749
dc.description.abstractWe introduce a novel variant of the Lanczos method for computing a few eigenvalues of sparse and/or dense non-Hermitian systems arising from the discretization of Maxwell- or Helmholtz-type operators in Electromagnetics. We develop a Krylov subspace projection technique built upon short-term vector recurrences that does not require full reorthogonalization and can approximate simultaneously both left and rigth eigenvectors. We report on experiments for solving eigenproblems arising in the analysis of dielectric waveguides and scattering applications from PEC structures. The theoretical and numerical results reported in this study will contribute to highlight the potential and enrich the database of this technology for solving generalized eigenvalue problems in Computational Electromagnetics.en_US
dc.language.isoenen_US
dc.rights
dc.titleA novel Lanczos-type procedure for computing eigenelements of Maxwell and Helmholtz problemsen_US
dc.typeArticleen_US
dc.date.updated2018-08-09T08:08:38Z
dc.language.isiEN-GB
dc.journal.titleProgress In Electromagnetics Research
dc.description.fulltextopenen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record