Show simple item record

dc.contributor.authorGu XM
dc.contributor.authorHuang TZ
dc.contributor.authorCarpentieri B
dc.date.accessioned2018-08-08T09:33:32Z
dc.date.available2018-08-08T09:33:32Z
dc.date.issued2016
dc.identifier.issn0377-0427
dc.identifier.urihttp://dx.doi.org/10.1016/j.cam.2016.03.032
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0377042716301595
dc.identifier.urihttp://hdl.handle.net/10863/5673
dc.description.abstractIn the present paper, we introduce a new extension of the conjugate residual (CR) method for solving non-Hermitian linear systems with the aim of developing an alternative basic solver to the established biconjugate gradient (BiCG), biconjugate residual (BiCR) and biconjugate A-orthogonal residual (BiCOR) methods. The proposed Krylov subspace method, referred to as the BiCGCR2 method, is based on short-term vector recurrences and is mathematically equivalent to both BiCR and BiCOR. We demonstrate by extensive numerical experiments that the proposed iterative solver has often better convergence performance than BiCG, BiCR and BiCOR. Hence, it may be exploited for the development of new variants of non-optimal Krylov subspace methods.en_US
dc.language.isoenen_US
dc.rights
dc.titleBiCGCR2: A new extension of conjugate residual method for solving non-Hermitian linear systemsen_US
dc.typeArticleen_US
dc.date.updated2018-08-08T09:29:05Z
dc.language.isiEN-GB
dc.journal.titleJournal of Computational and Applied Mathematics
dc.description.fulltextopenen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record