Show simple item record

dc.contributor.authorJing YF
dc.contributor.authorHuang TZ
dc.contributor.authorCarpentieri B
dc.contributor.authorDuan Y
dc.date.accessioned2018-08-07T08:42:51Z
dc.date.available2018-08-07T08:42:51Z
dc.date.issued2012
dc.identifier.issn1054-4887
dc.identifier.urihttp://www.aces-society.org/search.php?vol=27&no=2&type=2
dc.identifier.urihttp://hdl.handle.net/10863/5666
dc.description.abstractAn interesting stabilizing variant of the biconjugate A-orthogonal residual (BiCOR) method is investigated for solving dense complex non-Hermitian systems of linear equations arising from the Galerkin discretization of surface integral equations in electromagnetics. The novel variant is naturally based on and inspired by the composite step strategy employed for the composite step biconjugate gradient method from the point of view of pivot-breakdown treatment when the BiCOR method has erratic convergence behaviors. Besides reducing the number of spikes in the convergence history of the norm of the residuals to the greatest extent, the present composite step BiCOR method can provide some further practically desired smoothing behavior towards stabilizing the numerical performance of the BiCOR method in the case of irregular convergence.en_US
dc.language.isoenen_US
dc.rights
dc.titleInvestigating the composite step biconjugate A-orthogonal residual method for non-Hermitian dense linear systems in electromagneticsen_US
dc.typeArticleen_US
dc.date.updated2018-08-06T15:04:22Z
dc.language.isiEN-GB
dc.journal.titleApplied Computational Electromagnetics Society Journal
dc.description.fulltextopenen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record