Show simple item record

dc.contributor.authorGeorgoulis EH
dc.contributor.authorLakkis O
dc.contributor.editorKreiss G
dc.contributor.editorLötstedt P
dc.contributor.editorMålqvist A
dc.contributor.editorNeytcheva M
dc.date.accessioned2018-05-04T08:28:49Z
dc.date.available2018-05-04T08:28:49Z
dc.date.issued2010
dc.identifier.isbn978-3-642-11794-7
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-642-11795-4_37
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-642-11795-4_37
dc.identifier.urihttp://hdl.handle.net/10863/4493
dc.description.abstractWe derive a posteriori error bounds for a quasilinear parabolic problem, which is approximated by the hp-version interior penalty discontinuous Galerkin method (IPDG). The error is measured in the energy norm. The theory is developed for the semidiscrete case for simplicity, allowing to focus on the challenges of a posteriori error control of IPDG space-discretizations of strictly monotone quasilinear parabolic problems. The a posteriori bounds are derived using the elliptic reconstruction framework, utilizing available a posteriori error bounds for the corresponding steady-state elliptic problem.en_US
dc.language.isoenen_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.rights
dc.titleA Posteriori Error Bounds for Discontinuous Galerkin Methods for Quasilinear Parabolic Problemsen_US
dc.typeBook chapteren_US
dc.date.updated2017-11-04T09:30:31Z
dc.publication.titleNumerical Mathematics and Advanced Applications 2009
dc.language.isiEN-GB
dc.description.fulltextopenen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record