Show simple item record

dc.contributor.authorBenci V
dc.contributor.authorMicheletti A
dc.contributor.authorVisetti D
dc.contributor.editor
dc.date.accessioned2017-11-03T10:15:54Z
dc.date.available2017-11-03T10:15:54Z
dc.date.issued2001
dc.identifier.issn1230-3429
dc.identifier.urihttp://projecteuclid.org/euclid.tmna/1471875817
dc.identifier.urihttp://hdl.handle.net/10863/3424
dc.description.abstractWe study the field equation −Δu+V(x)u+εr(−Δpu+W′(u))=μu on Rn, with ε positive parameter. The function W is singular in a point and so the configurations are characterized by a topological invariant: the topological charge. By a min-max method, for ε sufficiently small, there exists a finite number of solutions (μ(ε),u(ε)) of the eigenvalue problem for any given charge q∈Z∖{0}.en_US
dc.language.isoenen_US
dc.rights
dc.titleAn eigenvalue problem for a quasilinear elliptic field equation on R^nen_US
dc.typeArticleen_US
dc.date.updated2017-04-13T14:13:21Z
dc.publication.title
dc.language.isiEN-GB
dc.journal.titleTopological Methods in Nonlinear Analysis
dc.description.fulltextreserveden_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record