
Introducing Datatypes in DL-Lite
Ognjen Savković1 and Diego Calvanese1

Abstract. In Description Logics (DLs) and in the ontology-based
data access (OBDA) scenario, the use of actual datatypes (such as
those adopted in DBMSs) has received only limited attention, al-
though datatypes, with their predefined semantics, might have a sub-
stantial impact on the computational complexity of inference in ontol-
ogy systems. In this work we aim at overcoming these limitations, and
study the impact of adding datatypes to the OBDA scenario. To this
aim, we introduce a language for datatypes and we define the notion of
a datatype hierarchy, constituted by a set of datatypes that depend on
each other. We classify hierarchies in three classes according to their
distinguishing properties, and we establish a theoretical framework
for datatypes in the OBDA scenario, based on three major compo-
nents: a DL, a class of datatype hierarchies, and a query language.
We establish the computational complexity of query answering for
various significant instantiations of this framework, as ranging from
FOL-rewritable to coNP in data complexity.

1 INTRODUCTION

Using ontologies for the conceptual modeling of a domain of inter-
est is becoming increasingly popular, since ontologies have a formal
semantics based on Description Logics (DLs), and since they inherit
from modeling languages (like UML) intuitive constructors. Hence,
also application scenario where ontologies are proposed as a con-
ceptual view over data repositories, are becoming more and more
popular. The idea is that the data underlying an application are encap-
sulated by an ontology interface, and all access to the data is done
through the ontology [9]. This scenario is called ontology-based data
access (OBDA), since the major concern is the efficient access to data
through an ontology. A key inference task in OBDA is answering
(database like) queries by taking into account the ontology, and a
key desiderata is that the ontology layer does not introduce signifi-
cant overhead in dealing with the data, i.e., query answering is not
harder (when measured in the size of the actual data) than it would
be if the ontology layer was not present. This property is ensured
by so-called FOL-rewritability, and several DLs have been proposed
recently, grouped under the DL-Lite family [7, 3] for which query
answering is FOL-rewritable, and hence efficiently executable.

In DLs and in the OBDA scenario, the issues related to the use
of actual datatypes (such as those adopted in database management
systems) has received only limited attention. Recently, datatypes have
been investigated more thoroughly in OWL [12]. OWL datatypes are
based on the XML datatypes defined in the XML XSD W3C rec-
ommendation2. The standardization of the XML datatypes is based
on general recommendations and normatives for datatype declara-
tions and usage presented in the General-Purpose Datatypes (GPD)

1 Free University of Bozen-Bolzano, Bolzano, Italy, lastname@inf.unibz.it
2 http://www.w3.org/TR/xmlschema-2/

ISO specification [1]. The XSD specification contains a compre-
hensive set of datatype generators that operate over already defined
datatypes allowing for the creation of new datatypes using subtype
operators (facets), unions, vectors, etc. However, the XSD recom-
mendation does not provide a semantics, nor there is an obvious way
to do it while keeping the intuitive relationship between numeric
datatypes, for instance. For this and other reasons, the W3C recom-
mendation for OWL3 adopts only some of the XSD datatypes, and
introduces new ones, by overloading already existing XSD datatypes
[12]. For example, it recommends the use of owl:real instead of
xsd:double or xsd:float4. Additionally, in OWL 2 one can specify
user-defined datatypes by constraining or combining the defined ones.
Finally, OWL 2 defines various sub-languages (called profiles), such
as OWL 2 QL, and specializes for them also the datatypes.

Interfacing a DL with datatypes. The simplest form of interface
to datatypes adopted in DLs, e.g., in OWL 2 and in DL-LiteA, is via
binary relations (called attributes or data properties), each from a
set of objects to a set of datatype values. The range of such relations
can be restricted to a datatype (i.e., a unary datatype predicate). For
example, the range of the relation hasName could be restricted to
the xsd:string datatype. Such a mechanism is a special case of the
one adopted with concrete domains [8], which come equipped with
predicates of arbitrary arity (as opposed to unary predicates only)
defined over a domain of values, and where the DL provides constructs
for relating an object to a tuple of values that is required to belong to
a predicate of the concrete domain.

Naively adding dataypes to a DL could negatively affect its compu-
tational properties. To prevent this, usually a DL provides additional
restrictions over admissible datatypes. For example, EL and EL++

[6] require that: (i) satisfiability and implication of datatype predicates
are polynomially decidable, and (ii) datatype predicates are convex,
i.e., if any conjunction of datatypes implies a disjunction of datatypes,
then it also implies at least one of the disjuncts [11].

In the DL-Lite family, datatypes have been introduced in DL-LiteA,
with the strong condition that all datatypes are pairwise disjoint. The
only kind of assertion in which datatypes can appear are range restric-
tions on attributes (e.g., Rng(ssn) v String). The DL DL-Lite(HNA)

core

[4] extends DL-LiteA by allowing for expressing local (i.e., concept
dependent) attribute typing, and by allowing for inclusion and disjoint-
ness assertions between datatypes (thus relaxing the condition of pair-
wise disjointness). However, these kinds of assertions are in general
not sufficient to properly take into account the semantics of predefined
datatypes, which is given a priori (i.e., T I = val(T) ⊆ ∆IV , where
val(T) is the given domain of values corresponding to datatype T).
Hence, the relationships between different datatypes are also prede-
fined. As a consequence, the framework of [4] is only able to capture

3 http://www.w3.org/TR/owl2-direct-semantics/
4 http://www.w3.org/TR/owl2-syntax/#Datatype_Maps

{disjoint}

worksWith

employs

email: string
salary: real[20K-60K]
hasId: idType

AcadStaff

 salary: real[20K-40K]
PhDStudent

salary: real[40K-60K]
Professor

john:?

andrea:AcadStaff mary:PhdStudent

employs

worksWith

worksWith

employs

paul:Professor

Figure 1. UML class diagram and ABox for the scenario of Example 1

unary predicates with OWA semantics, but not (predefined) datatypes,
given that the latter might satisfy dependencies that cannot be ex-
pressed by simple inclusion and disjointness assertions, and which
might have an impact on (the complexity of) reasoning.5 This is shown
in the following example.

Motivating example. Suppose now that we constrain staff salaries
as specified in Figure 1, using facets of the datatype real (see later).
This can be formalized in DLs as follows:

AcadStaff v ∀hasSalary .real[≥20K ∧ ≤60K]
PhDStudent v ∀hasSalary .real[≥20K ∧ ≤40K]

Professor v ∀hasSalary .real[≥40K ∧ ≤60K].

Assume we are given the ABox

Professor(paul),PhDStudent(mary),AcadStaff (andrea),
worksWith(mary , andrea),worksWith(andrea, paul),
employs(john, andrea), employs(john,mary),

and we are asking the query

q(x)← employs(x, y) ∧ salary(y, s) ∧ real[≥20K ∧ ≤40K](s) ∧
worksWith(y, z) ∧ salary(z, t) ∧ real[≥40K ∧ ≤60K](t).

Considering that the range of salaries of academic staff covers the
range of salaries of PhD students and professors, if we require via
AcadStaff v ∃salary that each academic staff has a salary, then
andrea will have either a student salary or a professor salary (although
we don’t know which one). However, reasoning by cases we can
conclude that in both cases the query answer should be john . This
shows that predefined datatypes can relate to each other in a more
complex way than our KB language is capable to express, and this
needs to be taken into account in reasoning.

Contributions. In this work we aim at overcoming these restric-
tions and study the problem of introducing datatypes into the OBDA
scenario. We introduce a formal language over datatypes, that enables
creating new datatypes from existing ones using a comprehensive
set of constructors. Additionally, we define the notion of datatype
hierarchy, constituted by a set of datatypes that can be freely defined
using the available constructors. Based on the conditions that are
satisfied by the datatype hierarchies, we classify them in three classes
D0 ⊃ D1 ⊃ D2.

Apart from the ontology language, we explore adding datatypes to
other parts of the OBDA scenario, in particular the query language.
Specifically, we introduce the language UCQD , which is obtained by
extending standard UCQs with datatype constraints. In this frame-
work we distinguish between three major components (L+D+Q).
The first component is constituted by the ontology language L, and

5 To overcome these difficulties, [5], which is the followup work of [4],
adopted the conditions on datatypes that were first proposed in [13]. These
are the ones on which also the present paper builds on (cf. Section 3).

includes also the interface for combining ontologies with datatype hi-
erarchies. The second component is the classD of datatype hierarchies
considered. The last component is a query languageQ, over ontolo-
gies and datatype hierarchies (L+D). The main technical contribution
of our work consists in studying the properties of two important in-
stances of the OBDA framework, namely, DL-Lited+D1+UCQ and
DL-Lited+D2+UCQD , both based on an expressive member of the
DL-Lite family of DLs. For both scenarios, we prove the property of
FOL-rewritability of query answering and satisfiability. We also show
for both cases that the given conditions over datatype hierarchies are
indeed necessary to preserve FOL-rewritability of query answering.
By relaxing any of the conditions, query answering becomes coNP-
hard in data complexity, and hence not only non-FOL-rewritable but
also intractable in the size of the data.

2 PRELIMINARIES
We present now the lightweight DLs of the DL-Lite family for which
we develop our results. In DLs, the domain of interest is modeled
using concepts (unary predicates), roles (binary predicates connecting
two objects), and attributes (binary predicates connecting an object
to a value), starting from atomic concepts A, atomic roles P , and
atomic attributes U . In DL-LiteA [9], a basic role, denoted R, is an
expression of the form P or P−, and a basic concept, denoted B,
is an expression of the form A, ∃R, or ∃U . Additionally, we make
use of datatype names, denoted T . A knowledge base (KB) is a pair
K = 〈T ,A〉 where T is a TBox describing intensional knowledge,
and A an ABox maintaining extensional knowledge. A TBox is a
finite set of (positive) inclusions (PIs) B1 v B2 or R1 v R2, neg-
ative inclusions (NIs) B1 v ¬B2 or R1 v ¬R2, U1 v ¬U2, and
functionality assertions (funct R) or (funct U). The DL DL-Lited ex-
tends DL-LiteA with role constraints (symm R), (asym R), (refl R)
or (iref R) [3], local attribute restrictions B v ∀U.T , and global
attribute restrictions Rng(U) v T [4]. Given a TBox T , we denote
with v∗T the reflexive and transitive closure of the v relation. Instead,
DL-Litecore is obtained from DL-LiteA by disallowing (positive and
negative) role inclusions and functionality assertions.

To define ABoxes, we make use of an alphabet ΓO of object con-
stants and an alphabet ΓV of datatype constants. An ABox is a fi-
nite set of membership assertions A(o), P (o, o′), or U(o, d) where
o, o′ ∈ ΓO and d ∈ ΓV . Similar to DL-LiteA, we impose the syntactic
restriction that a role P declared functional, via (funct P), or inverse
functional, via (funct P−), cannot be specialized, i.e., cannot appear
in the rhs of a role inclusion assertion R v P or R v P−. The same
applies to attributes.

Queries. An atom is an expression of the form A(t), P (t, t′),
U(t, t′), or T (t) where t and t′ are atom terms, i.e., variables or
constants from ΓO ∪ ΓV . A conjunctive query (CQ) q over a KB
K is an expression of the form q(~x) ← β(~x, ~y), where ~x is a tuple
of distinct variables, called distinguished, ~y is a tuple of distinct
variables not occurring in ~x, called non-distinguished, and β(~x, ~y) is
a conjunction of atoms with variables in ~x and ~y, whose predicates
are atomic concepts, roles, and attributes fromK. A conjunctive query
with datatypes (CQD) is like a CQ , but it also admits atoms whose
predicates are datatype names. A union of CQs (UCQs) (resp., union
of CQDs (UCQDs)) is a set of CQs (resp., CQDs) with the same
head. Additionally we assume that CQDs (UCQDs) are safe, i.e., for
every datatype atom Ti(x) in a CQD there exists at least one attribute
atom U(y, x) in the same CQD . Finally a First-Order Logic (FOL)
query q over a KB is a, possibly open, FOL formula φ(x) whose
predicate symbols are from the KB.

Semantics. The semantics of DL-Lite is based as usual on the
notion of FOL interpretation I = 〈∆I , ·I〉, where ∆I is the
interpretation domain, the union of two non-empty disjoint sets,
∆I = ∆IO ∪ ∆IV , and ·I is the interpretation function. We refer,
e.g., to [9] for the semantics of the DL constructs. We just remark
that we adopt the unique name assumption (UNA) over the object
constants, i.e., for every two object constant o1 and o2, if o1 6= o2,
then oI1 6= oI2 . UNA is not enforced over the datatype constants. When
convenient, we may view an interpretation as a set of facts. We also
make use of the standard notions of satisfaction, model, and entail-
ment. Given an interpretation I = 〈∆I , ·I〉, the FOL query q = φ(x)
is interpreted in I as the set qI of tuples ~o ∈ ∆I × · · · ×∆I such
that I |= q(~o).

A tuple ~c of constants appearing in K is a certain answer to q
over K, written ~c ∈ cert(q,K), if for every model I of K, we
have that cI ∈ qI . Given an ABox A, the interpretation DB(A) =
〈∆DB(A), ·DB(A)〉 is obtained from A by taking ∆DB(A) as the set
of constants in A, and interpreting each concept, role, and attribute
with the set of facts asserted in A.

Given a TBox T and a query q, a FOL query qFOL defined over
the alphabet of T , is called perfect reformulation of q w.r.t. T , if for
every non-empty ABox A and every tuple ~t of constants occurring in
A, we have that ~t ∈ cert(q, (T ,A)) if and only if ~t DB(A) ∈ qDB(A)

FOL .
We remind that the data complexity of FOL query evaluation is in

AC0 [2], which is strictly contained in PTIME and hence in coNP.

3 EXTENDING DL-Lite WITH DATATYPES
In this section we present our proposal for extending with datatypes
the logics of the DL-Lite family, with the aim of preserving their
good computational properties. Inspired by XML and RDF datatype
schemas, and by [12], we introduce a language for defining datatypes
by using constructors starting from a set of predefined datatypes.

A datatype T is a quadruple (LST ,VST ,FST , ·T), where LST is a
countable (possibly infinite) set of (datatype) constants called lexical
space, VST is a (possibly infinite) set of datatype values, FST is a
(possibly infinite) set of facets, each being a restriction of the value
space, and ·T : LSTi → VSTi is an interpretation function. For
example, the datatype int can be defined as ({. . . ,−1, 0, 1, . . .}, Z,⋃
n∈Z{<n, >n,≤n,≥n,=n, . . .}, ·int).
Each facet of T may depend on one or more parameters, and

corresponds to a unary predicate that restricts the value space of T .
Most of the standard XML datatypes possess facets, like inequalities
over numeric datatypes or regular expressions over strings. Moreover,
general facets are defined over every datatype (e.g., equality). A
facet expression φ for T is a boolean formula over the facets of
T for which the parameters, if present, have been instantiated (we
call these instantiated facets). Examples are ranges of reals, such
as ≥40K ∧ ≤60K used in Example 1. The semantics of a facet
expression is defined in the obvious way, considering the semantics
of its parametrized facet components and of the boolean operators.

A datatype can be either primitive, i.e., defined axiomatically
(a priory) and not in terms of other datatypes, or derived from
other datatypes using datatype ranges. A datatype range over a set
{T1, . . . , Tn} of (primitive or derived) datatypes is an expression ϕ
built according to the syntax

ϕ −→ ⊥d | >d | Ti | Ti[φ] | {d1, . . . , dm} | ϕ1 ◦ ϕ2,

where ⊥d denotes the bottom datatype (interpreted as the empty set),
>d denotes the top datatype (interpreted as the set of all possible
datatype values, see below), Ti ∈ {T1, . . . , Tn}, φ denotes a facet

expression, {d1, . . . , dm} is a set of datatype constants from the Ti’s,
and ◦ is a set operator in {u,t, \,×}. To derive a new datatype T
using a datatype range ϕ, we can assert T := ϕ.

The value space VST is obtained from the value spaces of
T1, . . . , Tn by considering the semantics of the facet expressions
and set operators used in ϕ. The lexical space LST is a set of fresh
constants that are in one-to-one correspondence with the constants of
the types T1, . . . , Tn whose value is in VST , and that are interpreted
as the corresponding constant, while the set FST is empty. Notice
that defining new datatypes using facets is in line with the idea of
user-defined datatypes implemented in OWL 2. For example, a new
datatype that represents valid email addresses of staff of the Univer-
sity of Bolzano can be obtained by restricting the string dataype as
follows:

regMailUnibz := string[RegExpr([w]+@inf\.unibz\.it)].

A datatype hierarchy D is a pair constituted by a countable (pos-
sible infinite) set {T1, T2, . . .} of datatypes whose lexical spaces
are pairwise disjoint, and a countable set {u1, u2, . . .} of untyped
constants. The interpretation function ·D of D complies with the se-
mantics of the datatypes, i.e.,

⋃
i ·
Ti ⊆ ·D . All datatypes in D are

primitive or derived from the existing ones in D, as specified above,
where the derivation relation is assumed to be acyclic. Additionally
we impose the UNA over untyped constants (i.e., uDi 6= uDj when
i 6= j), and that uDi /∈ TDj , for each i and j. Untyped constants
(which are similar to plain literals in RDF) are introduced mainly
for two reasons. First, it is not always the case that the datatype of
a constant is known, and second, it naturally fits to the idea that the
interpretation domain ∆D of a datatype hierarchy, called the datatype
domain, is an infinite set that is not restricted to the value spaces of
its component datatypes [12]. So, for a given datatype hierarchy D,
we define

∆D =
⋃
i T

D
i ∪

⋃
j{u

D
j }

and >Dd = ∆D . We point out that unary datatype predicates over
a concrete domain play the same role as datatypes in a hierarchy
restricting the datatype corresponding to the concrete domain.

Given a datatype hierarchy D with datatypes {T1, T2, . . .}, we
have identified the following conditions, stating important properties
of the hierarchy that have an impact on the computational complexity
of inference, as we will show later:

(infinite) There do not exist finitely many Ti’s such that
2 ≤ |

⋂
i T

D
i | < ∞.

(infinitediff) There do not exist finitely many Ti’s and Tj’s such
that

⋂
i T

D
i * TDj , for every j, and |

⋂
i T

D
i \

⋃
j T

D
j | <∞.

(opendomain) There do not exist finitely many Ti’s such that |∆D \⋃
i T

D
i | < ∞.

Given these properties, we classify datatype hierarchies as follows:

D0 is the set of all datatype hierarchies without restrictions.
D1 is the set of datatype hierarchies satisfying the (infinite) restr.
D2 is the set of datatype hierarchies satisfying the (infinite),

(infinitediff), and (opendomain) restrictions.

For example, the following three datatype hierarchies where the
primitive datatypes and facets are interpreted in the expected way are
classified as specified on the right:

D0 = {int, positiveInt, int[≤10]} D0 ∈ D0, D0 /∈ D1,
D1 = {int, positiveInt, nonNegativeInt} D1 ∈ D1, D1 /∈ D2,
D2 = {int, positiveInt, string} ∪ {ui}∞i D2 ∈ D2.

3.1 Datatype Frameworks
Given the above classification of datatype hierarchies, we are now
ready to discuss how the combination of a DL with a datatype hierar-
chy of a certain class might affect the computational properties of the
DL. To this aim, for a DL L and a class D of datatype hierarchies, we
denote with L+D the class of logics obtained by extending L with
a datatype hierarchy D from D. An L+D KB (or TBox, ABox) is a
KB (resp., TBox, ABox) in L such that all datatypes appearing in it
belong to D. From now on we require that every interpretation I of
the KB (resp., TBox, ABox) complies with the semantics of D, i.e.,
∆IV = ∆D and ·D ⊆ ·I .

The characterizing property of OBDA scenarios is FOL rewritabil-
ity of query answering. In our setting, we can identify three major
elements that might affect FOL rewritability: (i) the DL L, (ii) the
datatype class D, and (iii) the query languageQ of queries that can
be posed over a KB. We call a combination of choices for these three
elements a (datatype) framework, and denote it with L+D+Q. For
such frameworks, we are interested in FOL-rewritability.

Definition 1 LetL+D+Q be a datatype framework. ThenL+D+Q
is FOL-rewritable, if for every datatype hierarchy D ∈ D, every
L+D TBox T , and every query q over T inQ, there exists a perfect
reformulation of q w.r.t. T .

Our aim is to investigate potentially useful cases of datatype frame-
works that are FOL-rewritable, and identify the conditions under
which FOL-rewritability for a given framework is lost. Notice that,
not surprisingly, adding more expressive power to a certain compo-
nent of a framework might constrain us in selecting the other two
components. In the following two sections we illustrate this with two
significant framework instances.

4 FRAMEWORK 1: DL-Lited+D1+UCQ

We now investigate the properties of the framework
DL-Lited+D1+UCQ . Notice that DL-LiteA [9] together with
UCQs is a special case of this framework. Indeed, for OWL 2 QL6,
which is based on the DL-LiteR sub-language of DL-LiteA, the set
of allowed datatypes is such ”. . . that the intersection of the value
spaces of any set of these datatypes is either empty or infinite, which
is necessary to obtain the desired computational properties”.

We first show that condition (infinite) of D1 is necessary for this
framework to be FOL-rewritable (providing a formal justification of
the datatype restriction in OWL 2 QL). Indeed, we establish the much
stronger negative result that, if this condition is relaxed, then query an-
swering becomes coNP-hard in data complexity. To do so, we reduce
a coNP-hard problem to CQ answering over a DL-Litecore+D KB,
where D is any datatype lattice that violates the (infinite) condition.

Let D contain datatypes {T1, . . . , Tm} such that |
⋂m
i=1 T

D
i | = k.

For the reduction, we distinguish two cases. (i) When k ≥ 3, we
reduce the complement of the k-colorability problem to CQ query
answering. (ii) Instead, when k = 2, we reduce the 2+2-CNF unsatis-
fiability problem, in a way similar to the proof in [10]. The TBoxes
used in the reductions contain only concept inclusions (i.e.,B1 v B2)
and global attribute restrictions (i.e., Rng(U) v Ti), hence are ex-
pressible in DL-Litecore [9].

Theorem 1 LetD be a datatype hierarchy that violates the (infinite)
condition. Then there is a DL-Litecore+D TBox T such that answer-
ing CQs over 〈T ,A〉 is coNP-hard in |A|, i.e., in data complexity.

6 http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

We now prove that DL-Lited+D1+UCQ is FOL-rewritable. We
proceed in four steps: (1) Normalize the KB. (2) Define a canonical
model. (3) Show that KB satisfiability is FOL-rewritable. (4) Develop
an algorithm for the perfect reformulation of a UCQ .

1. Normalization. In order to simplify the subsequent steps, given
a datatype hierarchy D ∈ D1 and a DL-Lited+D KB K = 〈T ,A〉,
we apply to it a set of normalization rules. We first extend D to a new
datatype hierarchy D′ by adding to D for each attribute U ofK a new
datatype T Tmax (U), called maximal range for U , derived as follows:

T Tmax (U) :=
l

existsU′s.t. Uv∗T U
′ and Rng(U′)vT∈T

T.

If for an attribute U there exists no U ′ and T s.t. U v∗T U ′ and
Rng(U ′) v T , then T Tmax (U) := >d. Then, if T Tmax (U) turns out to
be inconsistent in D′, i.e., (T Tmax (U))D

′
= ∅, we add U v ¬U to

the TBox. To deal with (a)symmetry, we introduce a special role Id
that is always interpreted as IdI = {(o, o) | o ∈ ∆I} [3].

The normalization rules are shown in Table 1, where ; means that
the assertion(s) on the lhs are replaced by those on the rhs, where D′

is extended with a new datatype T u T Tmax (U). It is easy to see that
the rewriting rules are sound and that their application produces a
TBox that is equivalent to the original one and linear in size.

Table 1. Normalization rules for DL-Lited+D1

{(symm R)} ; {R v R−} {(asym R)} ; {R v ¬R−}
{(refl R)} ; {Id v R} {(iref R)} ; {R v ¬Id}

{B v ∀U.T} ; {B v ∀U.(T u TTmax (U))}
{B v ∀U1.T, U2 v∗T U1} ; {B v ∀U1.T, U2 v U1, B v ∀U2.T}

2. Canonical model. The canonical interpretation can(K) of a
DL-Lited + D′ KB K = 〈T ,A〉 is constructed using a chase-like
procedure [2], starting fromA and applying expansion rules consider-
ing the PIs in T . The domain ∆can(K) of can(K) contains all object
constants in A and a possibly infinite set of fresh objects. For a set
B of facts, let ob(B) denote the set of objects appearing in the facts
of B. Starting from can0(K) = A, we inductively define a possibly
infinite set can(K) =

⋃
i cani(K) of facts, where for i ∈ N:

can2i+1(K) := Close(can2i(K)) can2i(K) := Gen(can2i−1(K))

Close(B) contains B and for every B(o) ∈ B (resp., R(o1, o2) ∈ B,
U(o, d) ∈ B, and o ∈ ob(B)) such that B v∗T A (resp., R v∗T R′,
U v∗T U ′, and Id v∗T R), it also contains A(o) (resp., R′(o1, o2),
U ′(o, d), and R(o, o)), and nothing else.

To define Gen(B), we say that a PIB v ∃R (resp.,B v ∃U) is ap-
plicable in B if there exists B(o) ∈ B and no R(o, o′) ∈ B for some
o′ (resp., no U(o, d) ∈ B for some d). Let α be lexicographically the
first applicable PI in B. Then,

• if α isB v ∃R, then Gen(B) = B∪{R(o, o∗)}, for a fresh object
o∗,

• if α is B v ∃U , then we proceed as follows. We say that
an inclusion Bi v ∀U.Ti ∈ T is active if B′i v∗T Bi and
B′i(o) ∈ B. We select a fresh datatype value d∗ from D′ such
that d∗ ∈

⋂
Biv∀U.Ti is active T

D′
i , if the intersection is not finite. If

the intersection is a singleton we choose that value for d∗. Other-
wise K is unsatisfiable, and d∗ is an arbitrarily chosen datatype
value. In any case we define Gen(B) = B ∪ {U(o, d∗)}.

A crucial property of the canonical model is that it can be homo-
morphically mapped to any model of the KB. Formally, we have to
adapt the standard definition of homomorphism by parametrizing it
with a set of predicates.

Definition 2 Given two interpretations I = (∆I , ·I) and J =
(∆J , ·J) over a common set of predicates including the set P , a
homomorphism µ from I to J over P is a mapping µ : ∆I →
∆J such that for each predicate P ∈ P of arity n and each tuple
(o1, . . . , on) ∈ P I , we have that (µ(o1), . . . , µ(on)) ∈ PJ .

We state the crucial property of the canonical model.

Lemma 2 Let D be a datatype hierarchy in D1, K a satisfiable
DL-Lited+D KB, and M a model of K. Then, there exists a ho-
momorphism from can(K) toM over the set of concept, role, and
attribute symbols of K.

Notice that in the above lemma, the homomorphism does not in-
clude datatype predicates. Indeed, we can devise an example where the
homomorphism does not exist if datatype predicates are considered.

3. Satisfiability. Exploiting Lemma 2, we can prove that

Lemma 3 can(K) |= K iff K is satisfiable.

However, can(K) can be infinite and therefore this does not provide
an effective method for checking KB satisfiability. To do so, we extend
instead the technique of [9] that is based on constructing a FOL query
that checks for violations of NIs (Tn) and functionality assertion (Tf)
of the TBox. Namely, to every NI or functionality assertion α in T ,
we associate a Boolean query qα, s.t. I |= qα iff I 6|= α, for every
interpretation I. For example, the query associated to R1 v ¬R2

is qn()← R1(x, y), R2(x, y). We combine such queries with those
resulting from violations of attribute typing, defined below:

Qunsat := (
⋃

Rng(U)vT

U(x, v) ∧ ¬T (v)) ∪ (
⋃

Bv∀U.T

B(x) ∧ U(x, v) ∧ ¬T (v))

∪ (
⋃

{Biv∀U.Ti}li=1 s.t.

TD′
1 ∩···∩TD′

l =∅

B1(x) ∧ · · · ∧Bl(x) ∧ U(x, v)) ∪
⋃

α∈Tn∪Tf

qα.

To check for satisfiability, we can compute the perfect reformula-
tion of Qunsat with respect to T , as detailed in Step 4, and evaluate the
resulting query over the ABox considered as a database.

Lemma 4 (PerfectRef(Qunsat, T))DB(A) = false iff can(K) |= K.

From Lemmas 3 and 4, we can conclude

Theorem 5 The satisfiability problem for DL-Lited+D1 is FOL
rewritable.

4. Perfect rewriting. Lemma 2 and the fact that homomorphisms
are closed under composition, imply that cert(q,K) = qcan(K), for
every UCQ q. Notice that for this to hold it is crucial that q does not
contain any datatype predicates, as is the case for the framework that
we are considering. To actually compute certain answers, we resort
again to perfect reformulation. The PerfectRef algorithm we adopt
for DL-Lited+D1+UCQ , which rewrites a UCQ q by considering
the TBox of K, is directly derived from the one for DL-LiteA as
presented in [9], but is extended to take into account the special Id
role, needed for reflexivity. Specifically, we add to the iteration over
all queries q produced so far, the following step:

for all Id(t1, t2) ∈ q do
if t1 and t2 are unifiable with θ then

q′pr ← q′pr ∪ anon(reduceId(q, Id(t1, t2)));
end if

end for
Here reduceId(q, Id(x1, x2)) returns a new CQ θ(q) \ {θ(Id)} in
which the Id atom is discarded, and anon(·) replaces each variable
occurring only once in q with the symbol ′ ′, so that new rewrit-
ing rules in PerfectRef may become applicable. In addition, we
extend the rewriting rules so that {U(x, y)} can be rewritten into
{B(x), T Tmax (U)} if {∃B v U} ∈ T and T Tmax (U) = {d}.

Theorem 6 Let D be a datatype hierarchy in D1, K = 〈T ,A〉 a
satisfiable DL-Lited+D KB, and q a UCQ over K. Then

(PerfectRef(q, T))DB(A) = cert(q,K).

Taking into account that PerfectRef(q, T) depends only on
the TBox T and the input query q, we conclude that the
DL-Lited+D1+UCQ framework is FOL-rewritable.

The satisfaction of the D1 conditions can be directly checked,
given a KB together with a datatype hierarchy. Here, we would like
to exemplify some meaningful families of datatype hierarchies in D1.

Example 1 The most prominent datatype restrictions are inequalities
(i.e., {≤,≥, <,>, 6=}) over numeric datatypes. For example,

DQ
1 := Q ∪ {Q[≥q], Q[≤q], Q[>q], Q[<q], Q[6=q] | q ∈ Q}, and

D◦n1 := Z ∪ {Z[◦n] | n ∈ Z}, for ◦n ∈ {≤n,≥n, <n, >n, 6=n}

are the families of datatype hierarchies that are good candidates for
the OBDA framework, where Q[facet] (resp., Z[facet]) are datatypes
obtained from rationals (resp., integers) by restricting the value spaces.
Another example is the set of non-finite XML datatypes.

5 FRAMEWORK 2: DL-Lited+D2+UCQD

With respect to the framework studied in Section 4, we extend now
the query language with the possibility of using datatype predicates.
Clearly, condition (infinite) will continue to be necessary for FOL-
rewritability, but we show now that the extension of the query lan-
guage from UCQ to UCQD imposes additional conditions for FOL-
rewritability. Specifically, we show that we additionally need to as-
sume the (infinitediff) and (opendomain) conditions.

Similarly to the previous framework, the proof of necessity of
these conditions is based on reductions of coNP-hard problems to
UCQD answering in DL-Lited+D, where D violates at least one of
the conditions in D2.

Again we distinguish two cases. In the first case we reduce 2+2-
CNF unsatisfiability to the cases of CQD answering over KBs with
datatype hierarchies respectively satisfying

⋂
i T

D
i ⊆ TD1 ∪ TD2 ,

|
⋂
i T

D
i \TD1 | = m,D = 〈{T1},

⋃m
i=1{ui}〉, orD = 〈{T1, T2}, ∅〉

(for some m ≥ 1). In the second case we reduce k-coloring (for
k ≥ 3) to UCQD answering over KBs with datatypes satisfying
resp. D = 〈{T1, . . . , Tk}, ∅〉, D = 〈{T1, . . . , Tk−1},

⋃m
i=1{ui}〉,⋂

i T
D
i ⊆

⋃k
j=1 T

D
j , or |

⋂
i T

D
i \

⋃k−1
j=1 T

D
j | = m.

Theorem 7 Let D be a datatype hierarchy that violates at least one
of the (infinite), (opendomain), or (infinitediff) conditions. Then
there is a DL-LiteA+D TBox T such that answering UCQDs over
〈T ,A〉 is coNP-hard in |A|, i.e., in data complexity.

We now turn to FOL-rewritability of the framework
DL-Lited+D2+UCQD , which we prove again in four steps.

1. Normalization. This step is as in Section 4.

2. Canonical model. The construction of the canonical model is
analogous to the one in Section 4, except that the fresh datatype
value d∗ is selected such that d∗ ∈

⋂
Biv∀U.Ti is activated T

D′
i

and for any m datatypes T1, . . . , Tm in D′ s.t.
⋃m
j=1 T

D′
j (⋂

Biv∀U.Ti is activate T
D′
i it holds that d∗ /∈

⋃m
j=1 T

D′
j . Notice that

such selection is possible because of the (infinitediff) condition.
Moreover, it is necessary in order to be able to extend the homo-
morphism from the canonical model to any other model also to the
datatype predicates of the knowledge base.

Lemma 8 Let D be a datatype hierarchy in D2, K a satisfiable
DL-Lited+D KB, andM a model of K. Then, there exists a homo-
morphism from can(K) toM over the set of concept, role, attribute,
and datatype symbols of K.

3. Satisfiability. Considering that DL-Lited+D2 is a special case
of DL-Lited+D1 (the second framework is more general only in the
query language), it follows that satisfiability of DL-Lited+D2 is FOL-
rewritable.

4. Perfect rewriting. Given that the datatype predicates are taken
into account in the homormophism from can(K) to a modelM, we
can follow the same line of reasoning as in the previous framework
and show that cert(q,K) = qcan(K), for an arbitrary UCQD q.

We recall that we consider only safe UCQDs. In order to deal with
datatype predicates in the input UCQD , we need to further extend
the PerfectRef algorithm presented in Section 4, with the following
part:

for all U(x, i) ∈ q do
if T Tmax (U) v Rngq(U(x, i)) then

q′pr ← q′pr ∪ deleteRng(q, i);
end if

end for
Here, we have denoted with ’ i’ (where the subscript is needed to
distinguish different such variables) a variable that appears only once
in the CQ , counting the head but ignoring the datatype atoms. Then,
Rngq(U(x, i)) denotes the conjunction of datatype predicates con-
taining i, and the method deleteRng(q, i) creates a new CQD from
q by discarding all datatype atoms containing i.

Theorem 9 Let D be a datatype hierarchy in D2, K = 〈T ,A〉 a
satisfiable DL-Lited+D KB, and q a UCQD over K. Then

(PerfectRef(q, T))DB(A) = cert(q,K).

As observed, there is no significant difference between datatype
predicates and datatypes themselves. Now, we can ask whether we
can relax the conditions on the datatype hierarchy while preserving
FOL-rewritability, if we assume that only datatype predicates (facets,
constraints) but no datatypes appear in the query. Unfortunately, the
answer is negative. Indeed, our coNP-hardness reductions (in the
cases of (infinitediff) and (opendomain)) essentially use only super
type(s) (

⋂
i Ti) in the terminological part, while subtypes (

⋃k
j=1 Tj)

appear exclusively in the query. This proves that a special treatment
of datatype restrictions cannot bring additional expressive power on
modeling datatype language, and theD2 conditions need to be verified
over both datatypes and their restricting predicates.

Example 2 We continue Example 1 and propose suitable families of
numerical datatype hierarchies for our second framework:

D
◦q
2 := 〈Q ∪ {Q[◦q] | q ∈ Q}, {ui}∞i 〉, for ◦q ∈ {≤q,≥q, <q, >q},

D◦n2 := 〈Z ∪ {Z[◦n]}, {ui}∞i 〉, for ◦n ∈ {≤n,≥n, <n, >n |n ∈ Z}.

6 CONCLUSION
Table 2. Data complexity of query answering in DL-Lite datatype

frameworks.

DL-LiteA DL-Lited DL-Lited
D1 D2

UCQ AC0 AC0 AC0

UCQD coNP coNP AC0

We summarize in Table 2 our results on the data complexity of
query answering in the two variant of our datatype framework pre-
sented in Sections 4 (Column 2) and 5 (Column 3).

Column 1 shows the case of DL-LiteA, in which datatype hi-
erarchies satisfy the (infinite) condition and where in addition
the considered datatypes are pairwise disjoint. The coNP lower-
bound for UCQD answering is a consequence of the violation of
(opendomain). The set of datatypes supported in OWL 2 QL satisfy
the conditions of the D1 datatype class (in fact, much stricter condi-
tions), and we have shown here that such conditions are necessary
and sufficient to ensure FOL rewritability of CQ answering (both
in OWL 2 QL and in DL-LiteA). Moreover, by considering queries
with datatype predicates (UCQD), the conditions for the stricter D2

datatype class are required.
We are interested in extending the proposed framework to n-ary

datatypes (c.f., concrete domains [8]), aiming at finding suitable con-
ditions for FOL-rewritability. We are currently working on implement-
ing an extension of the presented framework in a prototype OBDA
reasoner, providing support for XML and user-defined datatypes.

REFERENCES
[1] ISO/IEC 11404:2007, ‘Information technology: General-Purpose

Datatypes (GPD)’, Technical report, ISO/IEC, CH-1211 Geneva 20,
Switzerland, (2007).

[2] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison
Wesley Publ. Co., 1995.

[3] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev, ‘The
DL-Lite family and relations’, J. of Artificial Intelligence Research, 36,
1–69, (2009).

[4] A. Artale, Y. A. Ibanez-Garcia, R. Kontchakov, and V. Ryzhikov, ‘DL-
Lite with attributes and sub-roles (extended abstract)’, in Proc. of
DL 2011, volume 745 of CEUR, ceur-ws.org, (2011).

[5] A. Artale, R. Kontchakov, and V. Ryzhikov, ‘DL-Lite with attributes and
datatypes’, in Proc. of ECAI 2012, (2012).

[6] F. Baader, S. Brandt, and C. Lutz, ‘Pushing the EL envelope’, in Proc.
of IJCAI 2005, pp. 364–369, (2005).

[7] The Description Logic Handbook: Theory, Implementation and Applica-
tions, eds., F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.
Patel-Schneider, Cambridge University Press, 2nd edn., 2007.

[8] F. Baader and P. Hanschke, ‘A schema for integrating concrete domains
into concept languages’, in Proc. of IJCAI’91, pp. 452–457, (1991).

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodrı́guez-Muro, and R. Rosati, ‘Ontologies and databases: The DL-
Lite approach’, in 5th Int. Reasoning Web Summer School (RW 2009),
volume 5689 of LNCS, 255–356, Springer, (2009).

[10] F. M. Donini, M Lenzerini, D. Nardi, and A. Schaerf, ‘Deduction in
concept languages: From subsumption to instance checking’, J. of Logic
and Computation, 4(4), 423–452, (1994).

[11] D. Magka, Y. Kazakov, and I. Horrocks, ‘Tractable extensions of the
description logic EL with numerical datatypes’, J. of Automated Rea-
soning, 47(4), 427–450, (2011).

[12] B. Motik and I. Horrocks, ‘OWL datatypes: Design and implementa-
tion.’, in Proc. of ISWC 2008, pp. 307–322, (2008).

[13] O. Savkovic, Managing Data Types in Ontology-based Data Access,
Master’s thesis, KRDB Res. Centre, Free Univ. of Bozen-Bolzano, 2011.

