Perilla Mint (*Perilla frutescens*): An Alternative Animal Feed to Enhance Omega-3 Fatty Acids in Meat and Eggs as Functional Food

Abstract: The health of humans has become a concern due to the increasing number of people suffering from cardiovascular diseases around the world. Consumption of functional food, especially omega-3 fatty acids, is a way to maintain health by consuming healthy fats. The benefits of omega-3 fatty acids (omega-3, 6, and 9) have been reported in reducing the risk of cardiovascular diseases. Omega-3 fatty acids are known to be found in fish, but recently, researchers have reported that they are also found in Perilla Mint (*Perilla frutescens*), which is a potential source of omega-3 fatty acids. It has been reported that the seed of Perilla Mint contains high omega-3 fatty acids, and when used in combination with Perilla Mint bran in animal feed such as pork and chicken, it can increase the omega-3 fatty acids in meat and eggs. The benefits of Perilla Mint can also reduce production costs for high-quality meat and replace other protein sources. Moreover, the seed of Perilla Mint has a trypsin inhibitor activity lower than soybean bran, which is beneficial for its use as animal feed.

Key words: Perilla Mint, quality meat, functional food.
Abstract: Human health is an increasing concern reflected, for example, by a rising number of patients with diseases like coronary artery disease (CAD) worldwide. The consumption of functional food, which is rich in omega-3 fatty acid is one possibility to improve health through a better nutrition. In the literature, benefits of omega-3, -6 and -9 fatty acids in terms of reducing the risk for CAD are well described. Omega-3 is known to be rich especially in marine fish. Recently, researchers reported the plant perilla mint (Perilla frutescens) as another potential source of this fatty acid. Particularly, the seeds of this plant have been reported with high omega-3 contents. When used as feed in swine and chicken, perilla seed and meal were found to increase omega-3 fatty acid contents in meat and other animal products such as eggs. An advantage of perilla mint is that production costs are much lower than for other crops such as soybean. Furthermore, perilla seeds have low levels of trypsin inhibitors, which make it suitable for use as animal feed.

Keywords: Perilla mint, carcass characteristic, meat quality

Introduction

In 2013 and 2014 consumption rate of eggs in Thailand was 167.8 and 177.3 eggs per person per year, respectively. During 5 years (2010-2014) consumption rate of egg in Thailand increased by 4.77% annually (Office of Agricultural Economics, 2014), mainly due to the fact that eggs are available at lower costs than other protein sources. Hence, improving nutrition through the consumption of eggs is an important issue for good health. Meat and poultry meat are 5 to 15 folds lower in omega-3 contents than seafood. Pork consumption of Thai people is further and further increasing and in 2013 Thai people consumed 14.0 kg per person per year, which increased to 14.88 kg in 2014. Poultry meat consumption in Thailand 2013 was 15.5 kg per person per year, increased by 7.73% in 2014 to 16.7 kg (Office of Agricultural Economics, 2015). This emphasizes the importance of egg and meat consumption as important source of protein for humans. However, it can cause negative effects in humans because of several compounds such as saturated fatty acids, cholesterol, toxic contaminations, nitrate-nitrite preservatives and antibiotic. For example, saturated fatty acids and cholesterol contained in eggs and meat are causative for several diseases in human health.

Nowadays, the quality of animal products, especially from a human health perspective, is of increasing importance. One reason is the steady increase of coronary artery disease (CAD), the most important cause of cardiovascular mortality worldwide, with over 4.5 million deaths occurring in the developing countries alone and 29% of Patients in Thailand were cardiovascular disease which is the highest than other disease (WHO, 2014). One of the most important risk factors for CAD is the nutrition. The fatty acid composition, especially those of the saturated fatty acids, represents a major risk factor. Consuming food rich in saturated fatty acids (i.e., meat, butter, and cheese) increases the amount of low density lipoprotein (LDL) in the blood but also increases high density lipoprotein (HDL the “good” cholesterol) and decreases triglycerides (Mozaffarian et al., 2010). The main functional difference between HDL and LDL is where they transport cholesterol to. LDL takes cholesterol from liver to the cells while HDL carries cholesterol excess from the blood stream into the liver for removing. The main structural
difference is that LDL particle is 50% cholesterol and
25% protein while an HDL particle is 20% cholesterol
and 50% protein (Harvey and Ferrier, 2011). This in
turn carries cholesterol to tissues, including the heart
arteries, and is thus causative for atherosclerosis
(LDL forms plaque in vessels and blocks the blood
system) causing CAD (Sudheendran et al., 2010).

The main sources of saturated fatty acids in the food
are animal products, such as milk, meat, and eggs.
Also, several plant products such as chocolate and
cocoa butter, coconut, and palm kernel oil are rich in
saturated fatty acids. Consuming too much saturated
fatty acid lead to CAD, heart stroke, heart disease,
blood pressure, type 2 diabetes and many other
diseases (de Souza et al., 2015). Numerous previous
studies reported positive effects of unsaturated fatty
acids, namely α-linolenic acid (omega-3) and linoleic
acid (omega-6) (Lecar, 2009), on human health by
decreasing the risk for CAD and other diseases.
Therefore, consumers worldwide are increasingly
demanding food products that are rich in omega-3
fatty acids. Increased levels of omega-3 in eggs
were realised by supplementation or adding several
sources of omega-3 such as flaxseed, fish oil and
microalgae (Fraeye et al., 2012) in laying-hen diets.
Thus, enhancing omega-3 levels in eggs and meat
though the use of agricultural by-products such as
perilla meal, which is rich in omega-3, may be one of
the possibilities to produce healthy food for the
consumer. It is well known people in Thailand
consume rice are main course, that is different from
westerner, their main course is meat. Therefore, meat
enhance with omega-3 is an alternative for meat
lover in Thailand and other countries which are like to
meat.

Perilla mint is known by many names, including
Chinese basil, purple mint, rattlesnake weed and beefsteak plant (Glenn et al., 2010). The
plant can be found on pastures in Southern India,
South Korea, northern Thailand, China, Japan,
Vietnam and Taiwan (Hyun et al., 2014). Perilla mint
was found in the northern part of Thailand such as
Chiang Mai, Chiang Rai, Phayao and Mae Hong Son,
cultivated area are 1,360 acre can produce perilla
seed 272,000 kg (Chairaunyost, 2012). As a
traditional oilseed, it is belonging to the Family
lamiaceae. It is widely used in households (CSIR,
1966) for sprinkle on top of soups, salads, sushi and
pickles or garnishes (Li et al., 2008; Meng et al.,
2009; Ha et al., 2012). The plant is an annual mint
and blooms once a year in cool season, thus only
one annual harvest is possible (Ampanchai et al.,
2008). The different parts of the plant are used for
different purposes: leaves are known for their
antioxidant and phenolic compounds, while seeds
are rich in protein and fat. The tribal population in
northeast India have been consuming perilla seed as
well as oil without any negative effects being
reported (Longvah et al., 2000).

In the following, this article reviews the
present knowledge on perilla mint when used as
animal feed in order to improve the quality of meat
and other animal products in terms of increasing the
omega-3 fatty acid content.

Chemical composition of *Perilla frutescens*

As generally in plants, the different parts of
perilla mint differ largely in their chemical
composition. The protein and fat content of its seeds
was 18.1 and 40.1%, respectively (Joshi et al.,
2015). Longvah and Deosthale (1991) reported
similar values (protein 17%, fat 51%). Most vegetable
oils are good sources of linoleic acid, but only few
vegetable oils contain significant amounts of α-
linolenic acids. Among them, perilla oil which have
the highest contents of α-linolenic acid (omega-3),

465
amounting nearly 57% (Longvah and Deosthale, 1991), linoleic acid (omega-6) 14% and oleic acid (omega-9) ranging from 14-23% (Asif, 2011). Contents are even higher than in fish oil (Kim and Choi, 2005). In addition, the content of saturated fatty acids, namely palmitic acid (5-7%) and stearic acid (0-1%) is lower than in other sources of oil (Table 1). When taking the FAO/WHO/UNU (1985) pattern of essential amino acid requirement for infants as the reference (Table 2), the protein scores of egg and cow milk are 100, while perilla whole seed and perilla without hull are 63 and 66, respectively. The amino acid lysine was the limiting amino acid in both cases. The amino acid score of perilla whole seeds and kernel were comparable to sunflower (61) and peanut (69), both of which also have lysine as the limiting amino acid (Bodwell and Hopkins, 1985). Consequently, perilla seeds can be considered as a better source of essential amino acids than soybean seed or sunflower meal (Table 2).

Perilla meal is a by-product of perilla seed after defatting. Protein contents are about 40.1% with 39% of the total content being essential amino acids. These levels are somewhat lower than in most animal products (beef 52, egg 55 and cow milk 54%) (Longvah and Deosthale, 1998). Perilla meal has compared to other plants such as soybean meal, sunflower meal, canola meal, cotton seed meal and sesame meal similar protein levels. It is therefore a good protein source for animal diets and good for eliminating agricultural by-products (Kusanteay and Uriyapongson, 2016).

Benefits of omega-3 fatty acids on human health

Mono- and polyunsaturated fatty acids are also known as omega fatty acids. Omega-3 fatty acids are polyunsaturated fatty acids where the first

Table 1. Fatty acid composition from different sources of oil (% of fatty acid)

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Beef tallow</th>
<th>Corn oil</th>
<th>Perilla seed</th>
<th>Perilla oil</th>
<th>Fish oil</th>
<th>Sunflower oil</th>
<th>Soybean oil</th>
<th>Palm oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated fatty acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myristic (C14:0)</td>
<td>3.96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.88</td>
</tr>
<tr>
<td>Palmitic (C16:0)</td>
<td>28.36</td>
<td>11.85</td>
<td>5-7</td>
<td>6.80</td>
<td>25.66</td>
<td>5.73</td>
<td>12.0</td>
<td>46.16</td>
</tr>
<tr>
<td>Stearic (18:0)</td>
<td>20.87</td>
<td>-</td>
<td>0-1</td>
<td>2.07</td>
<td>6.65</td>
<td>3.47</td>
<td>5.0</td>
<td>5.07</td>
</tr>
<tr>
<td>Arachidic (20:0)</td>
<td>-</td>
<td>0.54</td>
<td>-</td>
<td>-</td>
<td>0.54</td>
<td>1.0</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Unsaturated fatty acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmitoleic (16:1)</td>
<td>2.79</td>
<td>-</td>
<td>-</td>
<td>5.50</td>
<td>0.02</td>
<td>-</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Oleic (18:1)</td>
<td>44.02</td>
<td>28.94</td>
<td>NA</td>
<td>15.23</td>
<td>13.82</td>
<td>26.45</td>
<td>19-34</td>
<td>37.18</td>
</tr>
<tr>
<td>Linoleic (18:2)(n-6)</td>
<td>-</td>
<td>57.29</td>
<td>14</td>
<td>2.07</td>
<td>1.62</td>
<td>62.33</td>
<td>48-60</td>
<td>9.08</td>
</tr>
<tr>
<td>α-linolenic (18:3) (n-3)</td>
<td>-</td>
<td>0.93</td>
<td>57</td>
<td>61.30</td>
<td>1.08</td>
<td>-</td>
<td>2-10</td>
<td>0.36</td>
</tr>
<tr>
<td>Eicosapentaenoic acid</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>-</td>
<td>32.72</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(20:5) (n-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docosahexaenoic acid</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>-</td>
<td>6.47</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(22:6)(n-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Kim et al.</td>
<td>Kim and</td>
<td>Peiretti</td>
<td>Kim et al.</td>
<td>Kim and</td>
<td>Rosa et al.</td>
<td>Su et al.</td>
<td>Su et al.</td>
</tr>
</tbody>
</table>
double bond is located at the third carbon from the methyl end of the fatty acid chain. Marine animals are rich in the two long-chain omega-3 fatty acids docosahexaenoic acid (DHA; 22:6) and eicosapentaenoic acid (EPA; 20:5). Plants usually contain the omega-3 fatty acid, α-linolenic acid (18:3) as omega-3. Several studies have reported that α-linolenic acids and its derivatives are beneficial for the human health and fulfill essential physiological functions (Tinoco, 1982; Zollner, 1986; Crawford, 1987; Budowski, 1988; Neuringer et al., 1988). The consumption is, for example, known to lower blood lipid concentration, reduce the risk for thrombosis, prevent Alzheimer’s disease, decrease the risk for vascular disease and sudden death from ventricular fibrillation and tachycardia (Azin and Behnood, 2014). Omega-3 fatty acids fulfill neuroprotective actions in Parkinson’s disease and exhibit protective effects in Alzheimer’s disease, too (Asif, 2011). Omega-3 fatty acids prevent the neurotoxin-induced decrease of dopamine that normally occurs. Therefore, the dopamine system that was disrupted will cause Parkinson’s disease (Talbott and Hughes, 2006). α-linolenic acid is the precursor of n-6 and n-3 polyunsaturated fatty acid (PUFA) families, linoleic acid (C18:2n-6) and α-linolenic acid (C18:3n-3) are finally transformed to EPA and DHA in vivo (Weizhuo et al., 2013). The ratio of linoleic acid and α-linolenic acid in the diet is important for converting into long chain polyunsaturated fatty acids, including EPA and DHA (Diwakar et al., 2008). As above-mentioned, these

<table>
<thead>
<tr>
<th>Essential amino acid</th>
<th>EAA recommendation for human (FAO/WHO/UNU, 1985)</th>
<th>Perilla seed</th>
<th>Soybean seed</th>
<th>Sunflower meal</th>
<th>Peanut meal</th>
<th>Egg</th>
<th>Cow milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histidine</td>
<td>22</td>
<td>31</td>
<td>12</td>
<td>8.8</td>
<td>6</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>18</td>
<td>41</td>
<td>21.6</td>
<td>15.2</td>
<td>8.3</td>
<td>54</td>
<td>47</td>
</tr>
<tr>
<td>Leucine</td>
<td>25</td>
<td>62</td>
<td>36.2</td>
<td>21.9</td>
<td>15.3</td>
<td>86</td>
<td>95</td>
</tr>
<tr>
<td>Lysine</td>
<td>22</td>
<td>37</td>
<td>29.6</td>
<td>14.6</td>
<td>8.5</td>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>Methionine+ Cysteine</td>
<td>29</td>
<td>26</td>
<td>13.2</td>
<td>15.9</td>
<td>5.9</td>
<td>57</td>
<td>33</td>
</tr>
<tr>
<td>Phenylyalanine+ Tyrosine</td>
<td>34</td>
<td>55</td>
<td>40</td>
<td>25.2</td>
<td>21.9</td>
<td>93</td>
<td>102</td>
</tr>
<tr>
<td>Threonine</td>
<td>30</td>
<td>34</td>
<td>19.3</td>
<td>12</td>
<td>8.1</td>
<td>47</td>
<td>44</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>7</td>
<td>11</td>
<td>6.5</td>
<td>-</td>
<td>2.3</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Valine</td>
<td>31</td>
<td>35</td>
<td>22.2</td>
<td>17.5</td>
<td>9.9</td>
<td>66</td>
<td>64</td>
</tr>
</tbody>
</table>

affect the development of the human brain. Both EPA and DHA have several effects on inhibiting development of atherosclerosis, decrease triglyceride level and raise levels of HDL (high density lipoprotein “good cholesterol”) in blood plasma, but do not lower plasma cholesterol levels (Conner, 2001). Moreover, the impact of them may be primarily in preventing or relieving arrhythmia. Harris et al. (2009) reported cardiac mortality to be reduced by about 35% by modest EPA+DHA consumption. Although, omega-3 fatty acid, DHA and EPA have many advantages for the health but if consumed excessively (normally over 3 g per day), especially in patient that at the same time consume aspirin or warfarin, will increase bleeding or hemorrhagic stroke (only in cases of very large doses) and reduced glycemic control among diabetics (Lewis, 2008; Kromann and Green, 1980). According to the Food and Nutrition Board 2015 (Ornish, 2016) the acceptable intake for n-3 fatty acid is 1.6 g/day and 1.1 g/day for men and women, respectively (Asif, 2011).

Use of perilla mint as animal feed

Perilla mint was used as protein source but in their seed compound with a lot of oil. Fats and oils are a chemically diverse group of compounds. They have the highest average energy density among all macro nutrients. Therefore, fat is an important energy in diet and improve palatability and texture of diet in addition decrease dustiness and easy to make pellets. But they have limit level to use in animal diet such as not over 7% in swine diet because it causes flow ability problems preclude with swine (Shannon, 2016), in poultry not over 4% because it effect to decrease digestibility (Tancharoenrat, 2014). Perilla mint is not have only benefit but also have negative effect, some research reported about toxicity of perilla mint especially, perilla’s leaves is important problem in cattle poisoning that cause pulmonary edema (Brenner, 1993) because perilla ketone substance which found in leaves stem flower and root (Wilson et al., 1977; Glenn et al., 2010). Planta are most toxins when farmer cut and dried for hay late in summer, during flowering and seed production because flowering structure are the most dangerous but the ketone was not found in seed from perilla mint. Perilla ketone is not only harmful in ruminant but also toxic in small ruminant and mice (Glenn et al., 2010).

Perilla mint was used as feed in animals for studying the mechanism of digestion or immunology. The common model species were rats or mice which are easy to manage and observe. Ihara et al. (1998) used the oil of safflower and perilla feed in male Wistar rats, 3-weeks old, and observed the lipid metabolism. Two diets either containing safflower oil (SO, high linoleic acid) or perilla oil (PO, high α-linolenic acid) were compared. These diets were fed to rats for 3, 7, 20 and 50 days. The results showed that the level of cholesterol, triglycerides and total lipid in the PO-diet group were lower than in the SO-group feeding the diets for 7 days. This experiment demonstrated that α-linolenic acid plays an important role in the regulation of serum cholesterol and the magnitude of regulation is more powerful when compared to linoleic acid.

Perilla mint has been used to feed animals because of its low costs and abundance throughout East Asia. Oita et al. (2008) studied the extraction and digestion of Perilla frutescens. In their experiment water-and NaCl-soluble protein fraction contained less trypsin inhibitors than that of soybeans.

As mentioned above, perilla seed and meal are suited as animal feed. Perilla seed was used in
polyunsaturated fatty acids (PUFA) enriched diets for growing rabbit aged of 73 days in order to increase the content of n-3 PUFA. Peiretti et al. (2010) fed perilla seed to rabbits at a proportion of 10% of the diet. Their results showed that neither digestibility of energy (DE) nor digestibility of protein (DP) and the ratio of DP/DE differed when compared with soybean meal. In during the growth stage of swine fattening, Thirty-one three-way crossbred Landrace×Large White×Duroc pigs, perilla meal was included into diets at 10, 15 and 20% (fresh matter). The 10%-group required the least amount of time to reach the target weight (110 kg) and showed the highest value for daily gain. In contrast, the control group without perilla showed the highest carcass percentages. The 15%-group showed medium back fat thickness. The 20%-group had a thinner back fat thickness of the shoulder than the other groups. Regarding the fatty acid composition of perienal fat, back fat, intermuscular fat and intramuscular fat positive correlations with increasing perilla meal proportions were found. The content of C18:3 increased, while the ratio of n-6/n-3 decreased. Furthermore, the ratio of C18:2/C18:0 and unsaturated fatty acid content also increased in a dose-dependent manner (Yamada et al., 2007). Furthermore, Zang et al. (2003) added Perilla frutescens in laying hen diets at 8, 12, 16 and 20% (fresh matter), respectively. The results showed that the contents of PUFA increased to 20.42, 23.61, 24.07 and 24.62% in 8, 12, 16 and 20% supplemented groups, respectively, in contrast to 17.03% in the control group (P>0.05). The content of omega-3 fatty acid in yolk increased to 6.88, 8.72, 9.86 and 9.95% in the correspondent groups, being significantly higher than in the control group (1.21%, P<0.01). There was no significant difference in the total cholesterol (TCH). Perilla frutescens could be supplemented in the diet in order to increase the content of PUFA and omega-3 fatty acid, improve the ratio of omega-6 to omega-3 and PUFA to SFA, and decrease TCH and the cost. Likewise, Saito et al. (2006) studied feeding perilla oil and seed meal in laying hens and observed α-linolenic acid contents in yolk egg. The α-linolenic acid contents of the egg yolks in perilla oil and perilla meal at the dietary levels of 0, 2.5, 5, 7.5 and 10% each were 0.20, 1.20, 1.64, 2.59 and 3.00 mg/100 mg egg yolk, and 0.17, 0.21, 0.28, 0.32 and 0.39 mg/100 mg egg yolk, respectively. It was suggested that perilla seeds may be the most suitable feed for the production of eggs with high α-linolenic acid content from an economical point of view. Considering eggs are a rich source of dietary cholesterol and cardiovascular disease patient cannot eat egg over one egg per day (Nestel et al., 2017). But if we improve fatty acid profile in egg by increase omega-3 it will be a good alternative for cardiovascular disease patient and general person because omega-3 can respect to primary and secondary prevention of coronary heart disease (Clayton et al., 2015). So if they eat egg compound with omega-3 maybe reduce the risk cause cardiovascular disease in normal human and patient can eat egg by decrease concern.

Several researches indicated perilla seed and meal can improve fatty acid composition in meat and egg by increasing unsaturated fatty acid, especially omega-3 that has many benefits for human health. Using perilla mint in animal feed is still not pervasive to use in animal feed because the limitation of it such as fiber composition is quite high (problem with monogastric animal), cultivation in some area and harvest once time per year. It is interesting to use for increase value in meat and egg due to the property is high with protein and omega-3.
Conclusion

Seeds of perilla mint, of which all parts of the plant can be used as animal feed, are rich in α-linolenic acid. Through its use as feed, omega-3 fatty acid concentrations in meat and other animal products, i.e., eggs, can be increased, which in turn has positive effects on human health and is known to reduce the risk of different diseases such as coronary artery disease. Additionally, leaves are rich in various bioactive and phenolic compounds and seed meal can be used as protein source. Feeding perilla mint can minimize the contamination with methyl-mercury, which is caused by feeding fish meal. Overall, the use of perilla mint as animal feed has many advantages from a human health perspective and is economically efficient.

References

Peiretti, P. 2011. Fatty acid content and chemical composition of vegetative parts of perilla (Perilla frutescens L.) after different growth

