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ABSTRACT 

Finite element analysis is adopted in several engineering fields as such structural dynamics and 

multibody system dynamics. Fine meshes are usually employed to guarantee model accuracy. As a 

consequence, models have typically very large dimensions, and hence they are difficult to handle and 

often prone to numerical ill conditioning. Model reduction techniques, such as the Craig Bampton 

method, can be extremely useful to minimize model dimensions. 

This paper introduces an effective ranking method for the selection of CB interior modes suitable for 

vibrating systems under single harmonic excitation. The goal is to keep model dimensions to a 

minimum while preserving system forced response accuracy. The ranking of the interior modes is 

carried out using coefficients based on energetic considerations and taking into account the frequency 

and the shape of the force exciting the system. The aforementioned coefficients provide a measure of 

the contribution of each interior mode to the computation of the mean mechanical energy stored by 

the system in a period of excitation. 

The method is then applied to the model of a vibratory feeder. The results shows that the proposed 

method provides a very effective selection of the most important interior modes and therefore allows 

outperforming current state-of-the-art techniques. 
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1. INTRODUCTION 

1.1. General information 

Accurate finite element models are very useful in several highly technological engineering fields such 

as structural dynamics, multibody system dynamics, control engineering and signal processing. 

Unfortunately, accurate models have typically large dimensions, which may pose a limit to their 



 

 

usefulness for example for simulation [1], control design [2], optimization techniques [3, 4], model 

parameter identification [5]. In order to overcome such a problem several model reduction techniques 

have been developed in the last decades. In the structural dynamics and multibody fields, one of the 

most widespread reduction techniques is the Craig–Bampton (CB) method [6], in consequence of its 

straightforwardness. The Craig Bampton method has been developed for systems which can be 

described through linear FE representations. Basically this method is a combination of Guyan’s 

condensation and modal truncation. As Guyan’s condensation, it uses the static deflection shapes of 

some nodes of the system, called master nodes, and enriches this space with a reduced set of interior 

vibrational modes of the system to increase the accuracy.  

The practical implementation of the CB method imposes partitioning the physical coordinates �	ϵ	ℝ� 

into a subset of �	master degrees of freedom (dofs) ��ϵ	ℝ�, usually referred to as external dofs, and 

a subset of 	 slave dofs �
	ϵ	ℝ�, the so called interior dofs, with � + 	 = �:  

���� = ���� �
��� (1) 

Typically, such a distinction is made selecting as master dofs those on which external loads are 

applied or those lying at the interface with other subsystems, or, more in general, those that are of 

some interest (e.g. for measurements, monitoring and so on). Indeed, the master dofs are entirely 

retained in the reduced model. 

Then, the coordinate set is transformed into a hybrid coordinate set �	by means of the non-singular 

CB transformation matrix �	ϵ	ℝ�×�: 

���� = �������
���� = ��� �� � ������!��� � = ����� (2) 

The new hybrid coordinate set includes the master dofs ��, and the interior modal coordinates !, 

which are the modal coordinates related to the interior vibrational mode eigenvectors "#	ϵ	ℝ�	�ς =1,… , s�, i.e. the vibrational modes of the system obtained by constraining the set of master dofs. In 

Eq. (2) �	ϵ	ℝ�×� is a Guyan's reduction basis, and �	ϵ	ℝ�×�	 is the eigenvector matrix, i.e. the matrix 

whose columns are eigenvectors "#	�ς = 1,… , s�. Finally, 	�)ϵ	ℝ*×* and 	�	ϵ	ℝ*×+ represent, 

respectively, the identity and the null matrices (for any arbitrary integer scalar , and -). 

In order to reduce model dimensions, the interior modal coordinate vector ! is truncated to a smaller 

vector !.	ϵ	ℝ/	�0 ≪ 	�:   

���� ≅ 3�� �� �45 ������!.��� � = �4�.���			 (3) 

where �4	ϵ	ℝ�×��6/� is the CB reduction matrix, obtained from Eq. (2) by removing the columns of � 

associated to the interior modes which are neglected. 

A crucial aspect in the practical implementation of such a method is the proper selection of the 

reduced set of interior modes to be retained in reduced models to keep the dimensions to a minimum 

while guaranteeing a satisfactory accuracy. The most used approach to select the CB interior modes 

consists in retaining only the interior modes with the lowest eigenfrequencies [7] (typically up to two 

times the highest frequency of interest). Following this approach, unfortunately, high frequency 

interior modes, whose participation in the system dynamics may be considerable, could be discarded 

and low frequency modes, whose contribution may be negligible, could be retained in the reduced 

model. Therefore, this criterion to select the interior modes, though simple, is far from being optimal. 

In order to perform a more effective reduction using the CB method, some methods have been 

proposed in literature to rank and select the interior modes. Among the ranking methods proposed in 

literature one should at least recall the “Component Mode Synthesis χ” (CMS χ) [8], the “Effective 

Interface Mass” (EIM) [9, 10], the “Interior Mode Ranking” (IMR) [11] and the “Optimal Modal 

Reduction” (OMR) [12, 13]. Basically, the CMS χ, the EIM and the OMR are general purpose 



 

 

methods based on some terms representing the coupling between the interior modes and the system 

interface. Unfortunately, they all overlook the frequency range at which reduced order models should 

be accurate, as well as the frequencies and the spatial distribution of the external force acting on the 

system, even if they are known. Conversely, the IMR method takes into account the frequencies of 

interest, but neglects the spatial distribution of the external force, moreover it has been developed just 

for the reduction of resonant systems.  

Lots of systems are designed to operate excited with a know external force at specific frequencies, as 

for example vibratory feeders and sieves. In these cases, a more accurate and efficient model 

reduction can be performed taking into account the actual forces acting on a system. This evidence 

justifies the development of a novel ranking method, introduced in this paper, for the selection of the 

CB interior modes, and suitable for vibrating systems under harmonic excitation. The method has 

been finalized in order to rank and select the minimum number of the interior modes ensuring the 

achievement of an accurate representation of the system forced response.  

The underlying idea is that the most important interior modes are those that provide the largest energy 

contributions to the system forced response. The contribution of each interior mode to the mean 

mechanical energy stored by the system in a period of excitation is evaluated by means of scalar 

coefficients analytically defined.  

The paper outline is the follows: in Section 2 the proposed ranking method is introduced and 

discussed. In Section 3 the method is applied to a linear vibratory feeder. The effectiveness of the 

method in achieving an accurate representation of the system forced response is proved and compared 

with the one of the aforementioned state-of-the-art methods. Concluding remarks are given in the 

Section 4. 

2. RANKING METHOD 

Let us consider a n-dimensional linear time-invariant and undamped vibrating system, represented 

through its stiffness and mass matrices 7,8	ϵ	ℝ�×�		 and the physical coordinate vector �. Let the 

system be excited on the master dofs by a known harmonic force 9 at angular frequency ω: 

9��� = ;9����� < =
=>
?
>@ fBcos�ω� + αB�⋮f�cos�ω� + α��0�6B⋮0� H>

I
>J			 (4) 

where fK	and αK are respectively the amplitude and the phase of the harmonic component acting on the 

i
th
 dof.  

The total system mechanical energy in the presence of a harmonic force is given by the sum of the 

elastic and kinetic energy contributions: 

L��� = 12�����7���� + 12�N ����8�N ���			 (5) 

In order to evaluate the contribution of each interior mode to the system energy the set of physical 

coordinates in Eq. (5) is transformed by means of the CB basis, defined in Eq. (2): 

L��� = 12�������7����� + 12 �N ������8��N ���			 (6) 

Equation (6) introduces matrices 7OP = ��7� and 8OP = ��8�, which are the stiffness and the 

mass matrices in the CB basis. If, without lack of generality, matrices 8 and 7 are partitioned in 

accordance with the definition of the external and internal coordinates, namely: 



 

 

8 = 38�� 8�
8
� 8

 5 ; 													7 = 37�� 7�
7
� 7

 5 (7) 

and the modal matrix � is normalized with respect to the mass matrix of the internal dof subsystem 8

, the following expressions are obtained for 7OP and 8OP [6]: 

7OP = ��7� = �7�� + 7�
� �� R  
8OP = ��8� = S8�� + ��8�
� + 8�
� + ��8

� T8�
 + ��8

U���T8�
� + 8

�U �V W (8) 

where R	ϵ	ℝ�×�	 is the diagonal matrix of the squared angular eigenfrequencies associated to the 

interior modes. 

In order to provide a clearer expression of the equations, the submatrices of the matrices in Eq. (8) 

will hereafter be referred to with the following compact notation: 

7OP = 37��OP �� R5 ;													8OP = S8��OP 8�
OP8
�OP �V W (9) 

The system steady-state response � to the harmonic force is itself harmonic: 

���� = �XY���� = ������!	���� =
=>
?
>@ x�[cos�ω� + γB�⋮x�]cos�ω� + γ��ηBcos�ω� + βB�⋮η�cos�ω� + β�B� H>

I
>J	 (10) 

where x�` 	�a = 1,… ,��	and ηb	�c = 1,… , s� are the amplitudes of, respectively, each master dof and 

each interior modal coordinate, while γK	 and βb are the phases. 

Introducing Eq. (10) in Eq. (6), the system mechanical energy (kinetic and potential elastic energy) 

can be rewritten by separating the contributions of the master dofs �� and the interior modal 

coordinates !: 

L��� = 12 d������7��OP�����+ �N �����8��OP�N � e��� + 2�N �����8�
OP!N ��� + !����R!��� + !N ����!N ���fe (11) 

Equation (11) clearly highlights which are the contributions of the interior modes to system energy 

computation. In particular, the first two terms in Eq. (11) represent the energy contribution of the m-

dimensional external dof subsystem (represented through 7��OP and 8��OP), and therefore, they can be 

discarded in the evaluation of the energy contribution of each interior mode. In contrast, the other 

terms in Eq. (11) represent the contribution of the s-dimensional interior dof subsystem to the 

mechanical energy: they are a purely kinetic term �!N �!N �	an elastic term (!�R!�, and a term due to the 

inertial coupling between �� and	! (2�N ��8�
OP�!�. In order to evaluate the contribution of each 

interior mode to the system dynamics, let us consider just the summation of such terms of Eq. (11), 

referred to as LV: 

L���� = 12 de2�N �����8�
OP!��� + !����R!��� + !N ����!N ���fe (12) 

Finally, let us consider the mean value of L���� on a period g = 2h i⁄ : 



 

 

ElV = 1g mL����n� =o
p

12qreTω#s + ωsUη#s2 + ωs q x�t� M�
t,vOP cos	Tγw − β#Uη#
�

wyB ze�
{yB  (13) 

This time-independent scalar quantity is a meaningful and compact measure of the contribution of the 

interior modes to the computation of the mechanical energy stored in a period. In particular, from Eq. 

(13), it is evident that the contribution of the |}~ interior mode to the system mean energy ElV is 

weighted through the scalar coefficients Γ#,: 

Γ# = �Tω#s + ωsUη#s2 + ωs q x�t� M�
t,vOP cos	Tγw − β#Uη#
�

wyB � 													| = 1,… , s (14) 

The larger the value of Γ#, the more the |}~ interior mode is relevant to the computation of ElV and thus 

of El, and hence, the more it contributes to the system response in the presence of the harmonic force 9 

defined through Eq.(4). Therefore, the interior modes can be ranked with descending values of Γ#, and 

progressively included in the reduced model until a desired degree of accuracy of the model is 

achieved. 

3. METHOD APPLICATION 

3.1. Evaluation indices 

In order to be useful in practice, for example at system design early stages, a reduced model must 

provide an accurate representation of the system forced response both in terms of spatial distribution 

and amplitude. The accuracy of the reduced model is therefore evaluated by means of two indexes. 

The first one is the modal assurance criterion (MAC) between the vectors of the forced response 

computed at a certain time instant ��̅� in all the nodes by the full-order model ��� and by the reduced-

order one T�. = �4�.U: 

MAC = d����̅��.��̅�fs
T����̅����̅�UT�.���̅��.��̅�U			 (15) 

The second index is the relative gain error at the frequency of interest, i.e. the relative percentage 

error between the amplitude of the forced response computed by the full-order model and by the 

reduced-order one, evaluated at the frequency of interest for one arbitrary master dof (denoted through 

index c): 
ε�ω� = xb�ω� − x�b�ω�xb�ω� 	 ∙ 100		 (16) 

Obviously the target value for the first index is one, while for the second is zero. 

3.2. Test case: Vibratory feeder 

3.2.1. System description 

The vibrating system adopted for method validation is the one represented in Figure 1. It represents a 

linear vibratory feeder, of the kind usually employed in the packaging industries for conveying small 

components or products. Basically, a number of four-dof Euler-Bernoulli beam finite elements are 

employed to model both the feeder tray (along which conveyed products move), and the support 

beam, which is connected to the feeder tray by means of six linear spring and to the ground through 

two elastic supports modeled by linear springs too. The three concentrated and suspended masses in 

Figure 1 represent the external electromagnetic actuators, fixed to the feeder tray which excite it. Such 

a system model leads to 39 degrees of freedom (dofs). In particular, the six dofs on which the 

actuation forces are applied are considered the master dofs. As far as such forces are concerned, it is 



 

 

supposed that each of the three actuators generates a harmonic force at 50 Hz on the tray and an 

identical reaction force on its suspended mass. All actuation forces are supposed in-phase and 

identical in amplitude. Such an hypothesis is reasonable since electromagnetic exciter are usually 

driven by identical and in-phase harmonic currents. 

3.2.2. Method application and results 

The application of the proposed ranking method and of the benchmark ones leads to the results 

summarized in  Figure 2, where the two evaluation parameters defined above, are plotted as functions 

of the number of interior modes used in the reduced order representation. Clearly, for each method, 

interior modes have been added based on the ranking derived using the method itself.  

 

 Figure 2. MAC (left) and εg (right) vs number of interior modes.  

The capability of the proposed approach to ensure accuracy through a minimum set of properly 

selected interior modes is clearly proved by the results obtained. Indeed, the convergence of the 

proposed method to the ideal results (i.e. MAC = 1 and ���i� = 0) outperforms the ones of the four 

benchmark methods. For instance, by supposing that reasonable accuracy thresholds of 0.999 for 

MAC and of 0.2% for ���i� are prescribed, a 10-dimensional model (with 6 master dofs and just 4 

out of the 33 interior modes) is adequate if the retained modes are selected through the method 

proposed here. This leads to a model order reduction ratio of 74.3%, to be intended as the ratio 

between the number of dofs neglected in the reduced model and the order of the full model. 

Conversely, much higher model dimensions are needed to achieve the same accuracy by the other 

ranking the modes with other methods available in literature. Compared performances are shown in 

Table 1. 

 

0 5 10 15 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of interior normal modes

M
A

C
 [

-]

 

 

Proposed method CMSχ EIM OMR SBE

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

No. of interior normal modes

g
a
in

 e
rr

o
r 

[%
]

 

 

Figure 1. Finite element model of the vibratory feeder investigated. 



 

 

Table 1. Number of interior modes necessary for each method to obtain a MAC ≥ 0.999 and a εg ≤ 0.2% 

METHOD 
NUMBER OF 

INTERIOR  
MODES 

REDUCED  
MODEL 

DIMENSIONS 

ORDER 
REDUCTION  

RATIO 

Proposed Method 4 10 74.3% 

Component Mode Synthesis χ 9 15 61.5% 

Effective Interface Mass 17 23 41.0% 

Optimal Modal Reduction 18 24 38.4% 

Sorting Based on Eigenfrequency 11 17 56.4% 

4. CONCLUSIONS 

The results obtained highlight that one of the most critical issue to be tackled in the application of the 

CB method is the proper selection of the interior modes to be retained in accordance to their 

contribution to the system dynamics. The method proposed in this paper provides an effective solution 

to such an issue, by introducing energy-based analytical scalar coefficients which have been proved 

useful to rank the interior modes. The method can be adopted whenever the frequency response of a 

system excited with an harmonic force (whose frequency and spatial distribution are known) must be 

accurately represented through a reduced order model. Such a need is quite common in the design and 

optimization of vibrating systems such as vibratory feeder, sieves, or, more in general, of vibration 

generators. 

The theory proposed, which is general, is here applied to a vibratory feeder. The method effectiveness 

is corroborated through the comparison between its outcome and the ones provided by other ranking 

techniques available in literature. It is proved that the proposed method achieves the desired levels of 

accuracy with a minimal set of interior modes. 

ACKNOWLEDGEMENTS 

The authors acknowledge partial financial support by Fondazione Cariverona through the research 

grants “Tre Poli 1” and “Tre Poli 2”. The first Author acknowledges the financial support of the FSU 

foundation ("Fondazione Studi Universitari" — Vicenza) through a Ph.D. scholarship. 

REFERENCES 

[1] Vidoni, R., Gasparetto, A. & Giovagnoni, M., (2013), Design and implementation of an ERLS-

based 3-D dynamic formulation for flexible-link robots. Robot. Comput. Integrated Manuf., 29(2), 

273-282.  

[2] Caracciolo, R., Richiedei, D. & Trevisani, A., (2006), Design and experimental validation of 

piecewise-linear state observers for flexible link mechanisms. Meccanica, 41(6), 623-637.  

[3] Ouyang, H., Richiedei, D., Trevisani, A. & Zanardo, G., (2012), Eigenstructure assignment in 

undamped vibrating systems: A convex-constrained modification method based on receptances. 

Mechanical Systems and Signal Processing, 27397-409.  

[4] Richiedei, D., Trevisani, A. & Zanardo, G., (2011), A constrained convex approach to modal 

design optimization of vibrating systems. Journal of Mechanical Design, 133(6), 061011.  

[5] Pumhoessel, T., Hehenberger, P. & Zeman, K., (2012), Model reduction of a parametrically 

excited drivetrain. In: Proc. ASME 2012 International Design Engineering Technical Conferences 

and Computers and Information in Engineering Conference (pp. 1025-1034).  



 

 

[6] Bampton, M. & Craig, R., (1968), Coupling of substructures for dynamic analyses. AIAA J., 6(7), 

1313-1319.  

[7] Hintz, R. M., (1975), Analytical methods in component modal synthesis. AIAA J., 13(8), 1007-

1016.  

[8] Liao, B., Bai, Z. & Gao, W., (2007), The important modes of subsystems: A moment‐matching 

approach. Int J Numer Methods Eng, 70(13), 1581-1597.  

[9] Kammer, D. C. & Triller, M. J., (1996), Selection of component modes for Craig-Bampton 

substructure representations. Journal of Vibration and Acoustics, 118(2), 264-270.  

[10] Kammer, D. & Triller, M., (1994), Ranking the dynamic importance of fixed interface modes 

using a generalization of effective mass. Modal Analysis: The International Journal of Analytical and 

Experimental Modal Analysis, 9(2), 77-98.  

[11] Palomba, I., Richiedei, D. & Trevisani, A., (2014), A ranking method for the selection of the 

interior modes of reduced order resonant system models. In: Proc. ASME 2014 12th Biennial 

Conference on Engineering Systems Design and Analysis Copenhagen, Denmark, 2014, June 25-27.  

[12] Barbone, P. E., Givoli, D. & Patlashenko, I., (2003), Optimal modal reduction of vibrating 

substructures. Int J Numer Methods Eng, 57(3), 341-369.  

[13] Givoli, D., Barbone, P. E. & Patlashenko, I., (2004), Which are the important modes of a 

subsystem? Int J Numer Methods Eng, 59(12), 1657-1678.  

 


