
A Certification Technique for Cloud Security Adaptation

Claudio A. Ardagna
Università degli Studi di Milano

Crema, Italy
claudio.ardagna@unimi.it

Rasool Asal, Ernesto Damiani
EBTIC – Khalifa University

Abu Dhabi, UAE
rasool.asal@bt.com

ernesto.damiani@kustar.ac.ae

Nabil El Ioini, Claus Pahl
Free University of Bozen

Bolzano, Italy
{nelioini,claus.pahl}@unibz.it

Theo Dimitrakos
BT and the University of Kent

UK
theo.dimitrakos@bt.com

Abstract—Unpredictability of cloud computing due to seg-
regation of visibility and control between applications, data
owners, and cloud providers increases tenants’ uncertainty
when using cloud services. Adaptation techniques become
fundamental to provide a reliable cloud-based infrastructure
with definite behavior, which preserves a stable quality of
service for tenants. Existing adaptation techniques mostly focus
on performance properties and are based on unverifiable
evidence, which is collected in an untrusted way. In this paper,
we propose a security-oriented adaptation technique for the
cloud, based on evidence collected by means of a reliable cer-
tification process. Our approach adapts the cloud to maintain
stable security properties over time, by continuously verifying
certificate validity. It uses the output of verification activities
to index a feature model, where equivalent configurations are
used as the basis for adaptation. We also provide an analysis
of the approach on British Telecommunications (BT) premises.

Keywords-Adaptive cloud, Certification, Feature models

I. INTRODUCTION

The cloud computing paradigm is subverting the tra-
ditional IT composed of static and on-premise resources
and applications, part of a physical infrastructure owned
by a single enterprise. It provides a dynamic and evolving
environment where applications, platforms, and infrastruc-
tures are released as a service on a pay-as-you-go basis to
remote tenants [1]. Cloud comes with several advantages in
terms of flexibility, ease-of-use, and reduced costs, while its
adoption is often impaired by the difficulties for customers
to understand the behavior of a service/application in such
a dynamic environment. These difficulties are partly due to
segregation of visibility and control between applications,
data owners, and cloud providers, which may introduce a
level of uncertainty and limit predictability of the overall
IT system behavior, when compared to fully managed IT
systems. Cloud services are then affected by continuous
context changes and (new and unexpected) cloud events,
potentially distancing the observed cloud service behavior
by the expected one at runtime.

To fully unleash the potential of the cloud, cloud service
management needs to be automated at all stack layers and
integrated with intelligent techniques for dynamic provi-
sioning. The running system may in fact need to adapt

some of its configurations to handle changes that can
affect the underlying environment or user requirements.
Adaptation techniques and autonomic models have then
been proposed to build a reliable cloud with consistent
behavior [2], which reacts to context changes and events
to preserve a stable quality of service for tenants. Current
approaches [3], [4] mainly focus on adapting the cloud
according to performance and availability properties, by
extending resource management techniques with scalability,
elasticity, and reliability algorithms. They are often provided
as a black box, where events triggering adaptation activities,
as well as monitoring results, are often not available to
end users. The end users are expected to trust information
becoming available at deployment or access time, with
reduced visibility on the reasons triggering an adaptation.
While this may not represent a problem for normal users, it
represents a fundamental issue for users in critical security
domains and often prevents their movement to the cloud.

The approach in this paper addresses the above problems
by specifying an adaptation technique driven by trustworthy
and verifiable evidence. Evidence is collected using the
certification process in [5], which aims to shed light on
cloud behavior, increasing the transparency of cloud backend
working. Our approach preserves stable security properties
for a cloud system, by tuning the cloud configurations
to guarantee the validity of the certification process and
corresponding certificates over time. System modifications
affecting the certification process and certified security prop-
erties are precisely pinpointed and used to query a feature
model specifying equivalent cloud configurations.

The paper contribution is in the definition of a security
adaptation technique based on a certification process (Sec-
tions III and IV) and feature model (Section V). The pro-
posed technique builds on a Monitor-Analyze-Plan-Execute
(MAPE) control loop process and has the threefold advan-
tage of i) providing a user-informed adaptation, ii) sup-
porting an automatic adaptation enforcement (Section VI),
iii) maintaining a stable quality of service based on trust-
worthy evidence coming from certification activities. A first
evaluation of the proposed approach has been conducted on
British Telecommunications (BT) premises.



Table I
AN EXAMPLE OF SECURITY PROPERTIES

Property p̂r Class Level
l1 l2 l3 l4 l5

Data access level C Access only from within
the system (Rule 1)

Access to data from au-
thorized personnel only
(Rule 2)

Access to data from autho-
rized personnel for regular
operations and administra-
tors for non-regular opera-
tions (Rule 3)

Access to data from
administrators for
exceptional operations
only (Rule 4)

Access to data from own-
ers only (Rule 5)

Data exchange confidentiality C Encryption with TLS1.0 Encryption with TLS2.0 Encryption with TLS3.0 − −
Data storage confidentiality C Weak encryption or ser-

vice isolation
Medium encryption or
VM isolation

Strong encryption or hard-
ware isolation

− −

Data alteration detection I Auditing Any access is mediated by
an access control system

All data are signed − −

Percentage of uptime A 50≤Uptime<95 95≤Uptime<99 Uptime≥99 − −

II. BASIC CONCEPTS AND REFERENCE SCENARIO

This section presents our basic concepts and reference
scenario.

A. MAPE Control Loop

The components of an autonomic system need to be aware
of changes to their state and environment, and appropriately
react to them, with little or no involvement of the users. At
the core of an autonomic system is a 4-phase control loop
called MAPE. MAPE derives from the four phases com-
posing its process, namely Monitor-Analyze-Plan-Execute,
which are continuously and sequentially executed in a
loop [6]. The phase Monitor keeps constantly checking the
status of the system and reports the collected data. The phase
Analyze is the brain of the control loop, where collected data
are analyzed. The goal of this phase is to find anomalies or
inconsistencies in the collected data by performing different
types of data analysis depending on the system context.
The phase Plan builds a plan of adaptation based on the
outputs of phase analysis. It is crucial to select the optimal
system adaptation. Once the plan is ready, the phase Execute
performs the planned actions.

B. Security Properties

A security property pr is a pair (p̂r,l), where p̂r is
the property name and l is the property level modeling
the strength of the supported property. Level l refines the
property in terms of general objectives to be supported
by the system under consideration, which are independent
from the specific security mechanisms. In this paper, we
consider properties belonging to the classes confidentiality,
integrity, and availability (CIA) [7]. Table I presents for each
class examples of properties used as a driver for adaptation
techniques.

Security properties represent the target of our adaptation
system. Each level is used to define configuration constraints
on security mechanisms supporting the considered property.
Clearly, the same property level can be achieved by means of
different sets of security mechanisms. For instance, each of
the three levels of property data storage confidentiality can
be supported by either deploying an encryption algorithm or
by providing tenant isolation.

C. Reference Scenario

Our reference scenario is an e-health SaaS (EHS) system
deployed on top of a public cloud. It is composed of three
services distributed over the cloud, each responsible for a
specific EHS functionality: EHS-Patients responsible for pa-
tient management, EHS-Pharmacy responsible for medicine
and pharmacy management, EHS-Users responsible for doc-
tors and nurses management. The reference scenario involves
different actors with a different level of control and visibility
of the cloud: a cloud provider, managing the overall cloud in-
frastructure, and three service providers, each managing one
of the EHS components and related data. Five main security
requirements have been defined for EHS components: [R1]
all data exchanged between the different EHS components
must be encrypted (property data exchange confidentiality),
[R2] all data stored by EHS components must be encrypted
(property data storage confidentiality), [R3] an access con-
trol system must mediate each request to components EHS-
Patients and EHS-Pharmacy providing identification, au-
thentication, and authorization functionalities (property data
access level), [R4] all data stored by components EHS-
Patients and EHS-Pharmacy must be always signed (property
data alteration detection), [R5] the system must be available
at least 99% of the time (property percentage of uptime).
We note that requirement annotation imposes the definition
of constraints on single internal mechanisms implementing
the external components (Section IV).

In the following sections, we present how MAPE is imple-
mented in our adaptation approach based on the architecture
in [8] and integrates a security certification process.

III. CERTIFICATION PROCESS

The phase monitor of the MAPE control loop consists of
the cloud security certification process in [5]. The certifica-
tion process is managed by a certification authority with the
support of an accredited lab responsible for all evaluation
activities. It receives as input the ToC, representing the
system under verification, the security property pr to be
certified, and the list of evaluation activities to be executed.
All this information is specified in a machine-readable
certification model, which is executed on a specific ToC



to certify a property pr. After executing the certification
model, the process returns as output a certificate describing
a set of evidence e proving the support of pr by ToC. Then,
upon certificate issuing, additional evidence is continuously
collected to verify the validity of the certification process
and corresponding certificate in production, and in turn
the consistency between the observed and expected ToC
behavior at runtime. Evidence is collected by probes running
in the cloud and having access to the ToC.

In the following, for clarity and without loss of generality,
we consider a simplified certification model, which consists
of the system model driving the collection of evidence e
at the basis of a certification process. The model refers to
pr and ToC, and represents the execution paths of the ToC
as the concatenation of security and functional mechanisms
deployed at different layers of the cloud stack. We argue
that, as advised by cloud software testing practitioners [9],
the loss of generality due to this simplification is limited
as no deployed mechanisms of the real system are omit-
ted. Similarly to testing models [9], a certification model
can be represented as a direct acyclic graph, where each
vertex refers to a mechanism (e.g., access control, encryp-
tion, functional mechanisms) and is annotated with a set
{c1 ,. . .,cn}∈C of constraints on cloud configurations, and
each edge is annotated with a function call fi . A cloud
configuration refers to a precise setup of a cloud environment
and drives cloud service behavior. Formally, a certification
model is a system model defined as follows.

Definition 1 (Certification Model M): A certification
model is a direct acyclic graph GM(V,E,λ), where a vertex
vi∈V refers to a mechanism, an edge (vi ,vj )∈E is annotated
with function call fi to the mechanism represented by vj ,
and λ:V→C is a labeling function that associates a set
{c1 ,. . .,cn}∈C of cloud configuration constraints with each
vi∈V.

We note that each function call annotating an edge in
GM triggers a state transition and corresponding mechanism
execution. We also note that, to support our adaptation
technique in Section V, λ assigns λ(v) to each vertex
v, corresponding to a set {c1 ,. . .,cn} of alternative cloud
configuration constraints ci annotated on the mechanism
represented by v. At least one constraint ci must be satisfied
by mechanism at vertex v to behave correctly and support
property pr. A single ci can be defined as follows.

Definition 2 (Cloud configuration constraint): A cloud
configuration constraint ci is a conjunctive boolean formula
of expressions of the form op(attr,value), where op
is an operator in {=, 6=,<,>,≤,≥,∈}, attr represents a
configuration attribute referring to a security mechanism,
and value a (set of) value for the given attribute.

Configuration constraints derive from properties in Table I
and are distributed over the model by the certification author-
ity. As an example, in case property data storage confiden-
tiality is selected at level 3 (meaning that stored data must be

encrypted or data storage must be kept isolated), a possible
annotation for data storage is =(isolation,hardware isolation)
or, as an alternative, the system model must specify an
encryption mechanism protecting the data storage and an-
notated with constraint ≥(encryption algorithm,“AES256-
SHA”), that is, AES256-SHA or stronger algorithms must
be supported.

IV. CERTIFICATION PROCESS ANALYSIS

The phase analyze of the MAPE control loop is a 2-step
phase. The first step (certification model consistency) verifies
the consistency between the system behavior and the system
model. The second step (constraint verification) analyzes the
need of adaptation.

A. Step 1: Certification Model Consistency

Step 1 receives as input the certification model (Defini-
tion 1) and data on system behavior collected by probes in
phase monitoring (Section III). The goal of this step is to
verify the correct behavior of the system by matching the
collected evidence against the certification model. Collected
evidence is represented as execution traces over paths in the
certification model. A path is formally defined as follows.

Definition 3 (Path pi ): Given a certification model, a
path pi is a sequence of vertices 〈v0 ,. . .,vn〉, s.t. ∀n−1j=0 vj∈V ,
∃ an edge (vj×fj→vj+1 )∈E.

We note that fj represents the function call assigned to
each (vi ,vj )∈E. A trace that is matched against a path is
formally defined as follows.

Definition 4 (Trace ti ): An execution trace ti∈T is a se-
quence 〈f1 ,. . .,fn〉 of actions, where fj is a service/operation
execution.

A verification function MV is defined and takes as input
the system model and the collected evidence e, and produces
as output either success (1), if the evidence conforms to the
system model, or failure (0), otherwise, with a description
of the type of inconsistency found. We note that, while MV
could not verify all system behaviors, it always computes a
verification result according to the collected evidence. MV is
based on consistency relation ≡ between collected evidence
and certification model, defined as follows.

Definition 5 (Consistency Relation ≡): Given a trace
ti=〈f1 ,. . .,fn〉∈T and pj=〈v0 , . . . , vn〉∈M, ti≡pj iff
∀fk∈ti , ∃ an edge (vk−1 ,vk )∈E annotated with action fp
s.t. fk and fp refer to the same service/operation.

The results of the consistency relation are given as input
to the second step of this phase, which evaluates the need to
adapt configuration parameters on the basis of certification
model in Definition 1 and/or constraints in Definition 2.

B. Step 2: Constraint Verification

A failure returned by the consistency relation means that
there is an inconsistency between the certification model and



the execution traces. This scenario has been tackled in our
previous work in [10] and requires a system adaptation.

Some additional verification activities are executed by
probes to verify the configuration constraints ci specified
on the vertices of each path pj . Configuration constraint
verification is a function CV that takes as input a path pj and
produces as output either success (1), if each configuration
constraint in the corresponding path is satisfied, or failure
(0), otherwise, with the list of vertices violating configura-
tion constraints. Constraints on each vertex are evaluated by
probes using the appropriate mechanism (e.g., check con-
figuration files, monitor configuration-dependent execution
traces). If the configuration constraints do not match the in-
production system configurations, the corresponding vertices
are added to a list of misconfigured vertices, which is then
given as input to phase plan (Section V). We note that, if no
misconfigurations are found, control is given back to phase
monitor for evidence collection. We present an example of
verification for each property class in Section III.

Example 1: Let us consider a service certified for data
access level at level 4 using RBAC. Each invocation to
the ToC triggers the probe to check the metadata of the
request, which includes information about the user making
the request (e.g., authorization, role), and the operation
to execute (data object to access, type of operation). All
requests to be served by the ToC should be mediated by an
RBAC system whose model requires data to be accessible for
exceptional operations from authorized administrators only.
We remark that the correctness of the specified policies is
not in the scope of verification, as it is guaranteed by the
certification authority specifying the constraints.

Let us then consider data alteration detection at level 3
requiring all data to be signed. The probe needs to check
whether the storage supports signature functionalities and
all stored documents are signed. Constraints can also specify
the mechanisms (e.g., signature algorithms) to achieve the
specified property and their correct configuration.

Let us finally consider percentage of uptime. The probe
checks that the percentage of requests correctly served by the
ToC is consistent with the value(s) specified in the property.
Constraints can also specify the mechanism that must be
used to achieve the specified property (e.g., a replica-based
approach).

V. ADAPTATION PLAN

The phase plan of the MAPE control loop process receives
as input the list of misconfigurations calculated in phase
analyze and returns as output a plan of adaptation for each
of them, to maintain the certificate validity.

Adaptation activities need to keep track of existing con-
figurations and their parameters to successfully adapt a
misconfigured system. They also need to identify equivalent
configurations that can be used as alternatives to an existing
configuration. We use Feature Models (FMs), a formalism

that has been heavily used in software product lines, as
a way to model alternative configurations [11]. FMs can
be applied in any domains to represent commonalities and
differences in product/service configurations. They provide
an overview of the configuration domain of a product and
enable automated reasoning about features of interest. A
feature model is formally defined as follows [12].

Definition 6 (Feature Model FM): A feature model
FM is a 6-tuple 〈G,Em, Grxor, Gror, Creq, Cex〉, where:
• G(F,E, r) is a rooted tree with F as a finite set of

features, E⊆F×F is a finite set of edges, r∈F is the
root feature;

• Em⊆E identifies the set of mandatory features;
• Grxor, Gror⊆P (F )×F represent alternative and op-

tional feature groups, respectively. They are sets of pairs
of child features together with their common parent
feature and P defining the parameters of F .

• Creq and Cex define finite sets of constraints specifying
required and excluded features, respectively.

The feature model is used in this paper to represent
alternatives between equivalent mechanisms (including spe-
cific configurations) that can be used to enforce certified
properties. Figure 1 presents an example of CIA feature
model generated following Definition 6.

Upon receiving the list of misconfigured vertices in the
system model (phase analyze), phase plan initiates the adap-
tation process on the basis of the specified feature model. To
interact with the feature model, a query needs to be executed
using the information coming from phase analyze. A query
is formally defined as follows.

Definition 7 (Query Q): Given a feature model FM, a
query Q over FM has the form [pr/path] where pr identi-
fies the property under verification and is further refined as
p̂r/level according to property definition in Section II-B,
and path points to the mechanism and/or corresponding
configuration in FM that show the misconfiguration, that
is, for which corresponding constraints (Definition 2) in the
system model are violated.

For instance, if a misconfiguration is found for property
data alteration level 3 on the signature mechanism, we can
define query [integrity/data alteration detection/l3/signed
data]. Once the query is defined, it is given as input to
phase plan that evaluates it. Three adaptation strategies can
be executed as a result of the query evaluation.

A. Restore Configuration

Restore configuration strategy aims to restore all config-
urations back to the state that reflects the original certified
configurations. This strategy has the advantage of restoring
only the needed configurations (the misconfigured ones in
the certification model), rather than instantiating the whole
infrastructure and certification process from scratch.

Figure 2 shows the pseudocode of our planning algorithm,
which receives as input a misconfiguration and returns as



Figure 1. An example of feature model

output an adaptation plan. Restore configuration is consid-
ered first. Upon building a query Q to the feature model
from the misconfiguration (function Build Query), function
Get Restore is called with Q as parameter. This function
checks if query Q is a valid query (function Check) or, in
other words, whether the mechanism/configuration support-
ing the property still exist in the feature model. If a match
is found, function Get Config returns the configuration
represented by the query. Otherwise, a null value is returned.

Example 2: Let us consider EHS in our reference sce-
nario certified for property data alteration detection using
level 3 (signed data). At a certain time, the cloud provider
moves EHS to a different environment, where mechanisms
for data signature are not supported. Phase analyze raises
a misconfiguration and then calls the restore configuration
strategy, which checks whether the mechanism/configuration
causing the misconfiguration is still in the feature model.

B. Equivalent Configuration

Restoring the certified configuration is not always possible
due to changes in the provider infrastructure. Equivalent
configuration strategy suggests an alternative cloud config-
uration that is equivalent to the certified one. An equivalent
setting is therefore provided to maintain the same property,
and in turn certificate validity. Formally, a configuration
equivalence relation is defined as follows.

Definition 8 (Configuration equivalence relation ≡cf ):
Given a security property pr∈P , two configurations
Cf1 ,Cf2∈FM are equivalent, denoted Cf1≡cfCf2 , iff
security mechanisms mec1∈Cf1 and mec2∈Cf2 support
property pr∈P .

According to our algorithm in Figure 2, equivalent
configuration is the second option to consider. Function
Get Equivalent implements the equivalent configuration
approach. The function takes as input query Q and is
recursively called to retrieve all equivalent configurations,

INPUT
mc:=misconfiguration

OUTPUT
valid configs:={configurations}

MAIN
Q:=Build Query(mc);
valid config:={};
valid config∪:=Get Restore(Q);
valid config∪:=Get Equivalent(Q);
valid config∪:=Get Restrictive([Q.p̂r/Q.level]);
}
return valid config;

GET RESTORE(Q)
if (Check(Q) == true)

return Get Config(Q);
else return {};

GET EQUIVALENT(Q)
valid alternatives list:={};
if (Is Child Of (Q,Q.p̂r/Q.level)) {

alternative configs:=Get Alternatives(Q);
for each element el∈alternative configs {

if (Q≡cf el)
valid alternatives list∪=el;

}
return valid alternatives list∪Get Equivalent(Parent(Q));
}
else return {};

GET RESTRICTIVE(Q)
valid alternatives list:={};
alternative configs:=Get Alternatives(Q);
for each element el∈alternative configs {

if (Q.level>cf el.level)
valid alternatives list∪=el;

}
return valid alternatives list;

Figure 2. Planning algorithm

moving up in the feature model tree (function Parent)
until the property level is reached (function Is Child Of).
For each execution of function Get Equivalent, function
Get Alternatives is executed to retrieve all possible al-



ternatives identified by the query. All alternatives are then
checked (for each cycle) to find equivalent configurations
on the basis of equivalence relation ≡cf (Definition 8).
Equivalent configurations are stored in a list and returned
as the output of function Get Equivalent.

Example 3: Let us consider EHS in our reference sce-
nario certified for property confidentiality of data storage
at level 3, with AES256-SHA algorithm. Upon EHS de-
ployment, an inconsistency is detected: the in-production en-
vironment does not support encryption algorithm AES256-
SHA. According to the feature model in Figure 1 and our
algorithm in Figure 2, phase plan first checks alternatives
for query [confidentiality/data storage/l3/strong algorithm]
identifying DHE-RSA-AES256-SHA as a proper alterna-
tive to AES256-SHA. Since DHE-RSA-AES256-SHA is
not available in current settings, phase plan moves up in
the feature model tree and checks alternatives for query
[confidentiality/data storage/l3]. It then identifies physical
data storage isolation as a proper alternative to encryption
for maintaining the property.

C. Restrictive Configuration

When no equivalent configurations can satisfy the certified
property, a more restrictive (or stronger) configuration than
the certified one is considered. Formally, a configuration
restriction relation is defined as follows.

Definition 9 (Configuration restriction relation >cf ):
A configuration Cf1∈FM is more restrictive than
configuration Cf2∈FM, denoted Cf1>cfCf2 , iff
configurations Cf1 and C2 support the same property
pri and security levels ln∈Cf1 and lm∈Cf2 are such that
ln>lm , that is, ln is more restrictive or stronger than lm .

According to our algorithm in Figure 2, restrictive
configuration is the last option to consider. Function
Get Restrictive implements the restrictive configuration
approach. The function takes as input Q.pr (i.e., [p̂r/level])
and returns as output restrictive configurations. Function
Get Restrictive calls function Get Alternatives to retrieve
all possible alternatives based on Q.pr. All alternatives are
then checked (for each cycle) to find restrictive configura-
tions on the basis of restriction relation >cf (Definition 9).
Restrictive configurations are stored in a list ordered by their
level and returned as the output of function Get Restrictive.

Example 4: Let us consider EHS in our reference sce-
nario certified for property data exchange confidentiality at
level 2, with an encryption algorithm of medium strength.
However, by verifying the service at runtime, we discover
that the encryption algorithm is not working properly be-
cause of a bug. Phase plan first checks whether there is an
alternative algorithm at level 2, if not it checks whether a
more restrictive configuration is available. In our example,
mechanisms at level 3 are considered, prescribing a strong
encryption algorithm or hardware isolation.

VI. ADAPTATION ENFORCEMENT

The phase execute of the MAPE control loop enforces
the adaptation strategies emerged during phase plan. It is
performed by dedicated components that define the actions
to take based on the selected strategy. Once the adaptation is
committed successfully, phase execute passes the control to
phase monitor to verify the status of the committed changes
(MAPE control loop restarts). Phase execute receives as
input a list of valid configurations: zero or one restore
configuration, [0, n] equivalent configurations, and [0,m]
restrictive configurations. It iterates over the list of valid
configurations and finds the first configuration that satisfies
the property under verification. We note that once one valid
configuration is deployed, the process ends. We also note
that the n alternative (the m restrictive, resp.) configurations
are considered in the order returned by phase plan.

Phase execute is a 3-step process. The first step (reset)
removes the existing mechanism causing misconfiguration.
The second step (setup) instantiates the mechanism support-
ing the property under verification, by restoring the origi-
nal configuration, or deploying an equivalent or restrictive
configuration. The last step (check) verifies whether the
selected mechanism has been successfully deployed and
restarts MAPE control loop.

A. Integration with an Industrial Simulation Environment

We have simulated our approach in the British Telecom-
munications infrastructure based on Appcara Appstack [13].
Appcara Appstack is a cloud management layer that elimi-
nates the traditional server/component template-based solu-
tions, and uses a dynamic configuration modeling framework
that captures all details about application configurations. All
the details regarding deployed applications and their high-
level and low-level configurations are stored in a repository
using a patent-pending data model.

In the BT infrastructure [13], an agent-based automation
system is used for monitoring specific pre-defined system
properties (mainly availability and performance). Once a
system property does not comply with the system require-
ments, the agent triggers an event. The event is received
by the system administrator choosing a proper configuration
to satisfy the property that triggered the event. Despite the
fundamental advantages given by the current approach, it is
affected by two main limitations: i) lack of full automation
of the adaptation process, which could result in delays in
responsiveness and affect the quality of user experience; ii)
the administrator enforces adaptation recipes without evalu-
ating the interference of the changes with other activities or
configurations (e.g., a scale in the number of replicas can
increase availability, reducing consistency).

The enhancement of this industrial solution with the
functionality described in this paper and implementing the
architecture in [8] can mitigate the above limitations. A so-
lution relying on certification-based verification can reduce



Table II
POSSIBLE EHS ADAPTATIONS FOR PROPERTY DATA STORAGE

Adaptation strategy Mechanisms
Restore configuration data storage/l2/medium encryption/RC4-SHA

Equivalent configuration data storage/l2/medium encryption/RC4-MD5
data storage/l2/VM isolation

Restrictive configuration
data storage/l3/strong encryption/DHE-RSA-AES256-SHA
data storage/l3/strong encryption/AES256-SHA
data storage/l3/hardware isolation

the need of involving the administrator in the final adaptation
decision. In such an enhancement, trust in decision making
will be grounded in the trustworthiness of the certification
authority, which drives alternative configuration selection.
Also, our solution being based on MAPE control loop can
continuously handle side effects introduced by deploying
either automatically or semi-automatically a chosen con-
figuration, and evaluate whether a decision invalidates a
certificate, proposing possible alternative configurations.

Our approach can be integrated within the BT infrastruc-
ture by extending the logic of the continuous monitoring
and policy enforcement layer with the capability to support
the certification framework and collect evidence for a wider
scope of activities. This will be complemented by extending
the data/workload-driven approach of solutions such as Ap-
pcara Appstack and their recipe-based service management
model to enforce the adaptation plans in Section V.

B. Walkthrough Example

We illustrate a walkthrough example describing how the
different adaptation strategies are executed using tool FaMa-
FW (http://www.isa.us.es/fama/) in the BT environment. We
consider EHS system in our reference scenario deployed
on top of Appcara Appstack and requirement R2, requiring
all EHS components to store data in an encrypted form.
Appstack data model includes all details about the used
encryption algorithms, key lengths, and the encryption li-
braries. According to the feature model in Figure 1, we
assume EHS system to be certified for property data stor-
age confidentiality at level 2 (medium encryption) using
RC4-SHA. Once the deployment is done, phase analyze
reports an inconsistency: the encryption algorithm (RC4-
SHA) defined in the data model is not working properly. At
this point, the planning algorithm in phase plan (Figure 2)
initiates the adaptation process by executing query [data
storage/l2/medium encryption/RC4-SHA]. A list of possible
adaptations of the EHS system is returned to maintain
property data storage confidentiality (Table II).

Upon receiving the list of adaptations, phase execute sends
an event to Appstack to replace mechanism RC4-SHA with
an alternative option depending on the type of adopted
adaptation (step setup), as follows.

Restore configuration. It aims to restore mechanism RC4-
SHA by re-starting the encryption service with a new
installation of RC4-SHA library. Appstack executes the

change and if the misconfiguration persists, the equivalent
configuration strategy takes over.

Equivalent configuration. According to the results of phase
plan in Table II, we have two possible alternatives: i) to sub-
stitute RC4-SHA with an equivalent encryption algorithm,
ii) to enforce data isolation by moving data to the storage of
an isolated VM. Since both strategies have the same priority,
phase execute randomly chooses one configuration. App-
stack changes the data model by putting the mechanism in
place, then the service behavior is checked to make sure that
it is working properly. If both of the two configurations are
not working properly, the restrictive configuration strategy
is executed.

Restrictive configuration. According to the results of phase
plan in Table II, we have three alternatives: i) to substitute
RC4-SHA with DHE-RSA-AES256-SHA, ii) to substitute
RC4-SHA with AES256-SHA, iii) to enforce physical data
isolation by moving the storage to a different physical
machine. All three alternatives, being at the same level,
have the same priority and are chosen one-by-one until a
working configuration is found or all possibilities have been
evaluated.

If none of the aforementioned strategies is able to support
the property under adaptation, meaning no alternatives are
available to support the property, the appropriate action is
taken (e.g., the certificate is revoked).

We note that our solution builds on already deployed
frameworks, that is, the certification framework and the
BT cloud management approach. The overhead introduced
by our solution is therefore only in the calculation of
alternative configurations in FM based on FaMa-FW tool.
This calculation shows a negligible execution time of 66ms
for 6×103 configurations.

VII. RELATED WORK

Cloud adaptation has been first addressed to deal with
cloud migration. Jamshidi et al. [14] published a systematic
literature review on studies focusing on planning, executing,
and validating legacy systems migration to the cloud. More
attention has been increasingly given to cloud self-adaptation
to cope with runtime changes. The nature of the cloud allows
different types of native adaptations which fall typically in
two categories: i) services adaptation, where the deployed
service is adapted to guarantee higher availability and fault
tolerance (e.g., substitute services in an orchestration) [15],
ii) configuration adaptation, which consists of adapting or
reconfiguring the supporting infrastructure to guarantee the
deployed service requirements. Garcia-Galan et al. [11]
focused on automating the search of the most suitable
configuration of a given IaaS provider using feature models.
Schroeter et al. [16] used an extended feature model (EFM)
to represent variability of functionality and service quality
to handle runtime self-adaptive configurations. Pasquale et



al. [17] developed a user-centric adaptation approach which
makes use of MAPE to support the adaptation process.
Singh and Chana [2] proposed a systematic literature review
with an overview of the state of the art in the field of
autonomic cloud. The main idea of the review focuses
on how services can self-manage their resources and their
environment. From an industrial point of view, a special
focus has been dedicated to cloud infrastructure adaptation in
response to customers needs. However, most of the proposed
solutions rely on a limited number of pre-defined properties
to monitor and, in many cases, the adaptation options require
manual intervention [13], [18]. Addressing a novel problem,
our work is complementary to existing solutions for cloud
adaptation and can be applied in conjunction with them. In
particular, our solution can be applied in conjunction with
both academic [3], [4] and industrial approaches [13], [18]–
[20], providing two important extensions. First, an automatic
approach based on certification; second, the adaptation of
cloud configurations to maintain security properties.

VIII. CONCLUSIONS

Cloud computing supports an ecosystem subject to con-
tinuous context changes and unexpected events. In this
scenario, guaranteeing a stable quality of service becomes a
critical problem. In this paper, we presented a certification-
based adaptation technique for cloud services, which main-
tains stable security behavior of cloud-based systems. The
proposed approach relies on MAPE control loop process,
and provides a transparent, user-informed adaptation based
on reliable and trustworthy evidence coming from certifica-
tion activities.

ACKNOWLEDGMENTS

This work was partly supported by the project “A trust-
worthy certification approach for cloud-based composite
services” under the program “Piano sostegno alla ricerca
2015” funded by Università degli Studi di Milano.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of
cloud computing,” in Tech. Rep. UCB/EECS-2009-28, U.C.
Berkeley, USA, February 2009.

[2] S. Singh and I. Chana, “Qos-aware autonomic resource man-
agement in cloud computing: A systematic review,” ACM
CSUR, vol. 48, no. 3, p. 42, 2015.

[3] C. Inzinger, B. Satzger, P. Leitner, W. Hummer, and S. Dust-
dar, “Model-based adaptation of cloud computing applica-
tions.” in Proc. of MODELSWARD 2013, Barcelona, Spain,
February 2013.

[4] S. Farokhi, P. Jamshidi, I. Brandic, and E. Elmroth, “Self-
adaptation challenges for cloud-based applications: a control
theoretic perspective,” in Proc. of Feedback Computing 2015,
Seattle, USA, April 2015.

[5] M. Anisetti, C. Ardagna, E. Damiani, and F. Gaudenzi, “A
certification framework for cloud-based services,” in Proc. of
SAC 2016, Pisa, Italy, April 2016.

[6] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, and A. F. Yassin,
A practical guide to the IBM autonomic computing toolkit,
IBM, 2004.

[7] C. Consortium, D2.1: Security-aware SLA specification
language and cloud security dependency model, http:
//cumulus-project.eu/index.php/public-deliverables, Accessed
in March 2016.

[8] C. Ardagna, R. Asal, E. Damiani, and Q. Vu, “On the
management of cloud non-functional properties: The cloud
transparency toolkit,” in Proc. of NTMS 2014, Dubai, UAE,
March-April 2014.

[9] S. Tilley and T. Parveen, Software testing in the cloud:
migration and execution. Springer, 2012.

[10] M. Anisetti, C. Ardagna, E. Damiani, and N. El Ioini,
“Trustworthy cloud certification: A model-based approach,”
in Proc. of SIMPDA 2014, Milan, Italy, November 2014.

[11] J. Garcı́a-Galán, P. Trinidad, O. F. Rana, and A. Ruiz-Cortés,
“Automated configuration support for infrastructure migration
to the cloud,” FGCS, vol. 55, pp. 200–212, 2016.

[12] V. Štuikys, Smart Learning Objects for Smart Education in
Computer Science: Theory, Methodology and Robot-Based
Implementation. Springer, 2015, ch. Background to Design
Smart LOs and Supporting Tools, pp. 185–209.

[13] Appcara, http://www.appcara.com/products/appstack-r3, Ac-
cessed in March 2016.

[14] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration
research: a systematic review,” IEEE TCC, vol. 1, no. 2, pp.
142–157, 2013.

[15] E. Cavalcante, T. Batista, F. Lopes, A. Almeida, A. L.
de Moura, N. Rodriguez, G. Alves, F. Delicato, and P. Pires,
“Autonomous adaptation of cloud applications,” in Proc. of
DAIS 2013, Florence, Italy, June 2013.

[16] J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau,
“Dynamic configuration management of cloud-based applica-
tions,” in Proc. of SPLC 2012, Salvador, Brazil, September
2012.

[17] J. Garcı́a-galán, L. Pasquale, P. Trinidad, and A. Ruiz-Cortés,
“User-centric adaptation analysis of multi-tenant services,”
ACM TAAS, vol. 10, no. 4, p. 24, 2016.

[18] VMware, “Multi-cloud environments are becoming the new
normal for it,” http://tinyurl.com/htse8ol, Accessed in March
2016.

[19] J. Daniel, F. El-Moussa, G. Ducatel, P. Pawar, A. Sajjad,
R. Rowlingson, and T. Dimitrakos, “Integrating security
services in cloud service stores,” in Trust Management IX.
Springer, 2015, pp. 226–239.

[20] J. Daniel, T. Dimitrakos, F. El-Moussa, G. Ducatel, P. Pawar,
and A. Sajjad, “Seamless enablement of intelligent protection
for enterprise cloud applications through service store,” in
Proc. of CloudCom 2014, Singapore, December 2014.


