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Abstract

Rhizobacterial communities associated with Phragmites australis (Cav.) Trin. ex

Steud4 . in a hypersaline pond close to Wuliangsuhai Lake (Inner Mongolia –

China) were investigated and compared with the microbial communities in

bulk sediments of the same pond. Microbiological analyses have been done by

automated ribosomal intergenic spacer analysis (ARISA) and partial 16S rRNA

gene 454 pyrosequencing. Although community richness was higher in the rhi-

zosphere samples than in bulk sediments, the salinity seemed to be the major

factor shaping the structure of the microbial communities. Halanaerobiales was

the most abundant taxon found in all the different samples and Desulfosalsi-

monas was observed to be present more in the rhizosphere rather than in bulk

sediment.

Introduction

Hypersaline systems are extreme environments with salt

concentrations that approach or exceed saturation, glob-

ally distributed in marine and inland waters, springs and

soils. These ecosystems are characterized by a low level of

oxygen and a pH that can range from basic to acid (Paerl

& Yannarell, 2010)5 . The effect of salinity in sediments

makes these environments suitable for the development

of peculiar microbial communities adapted to survive in

these extreme ecosystems. Microorganisms are indeed

selected to thrive at different salinity levels and halophilic

bacteria are the most common group found in such envi-

ronments. Halophilic bacteria are present in different lin-

eages of the phylogenetic branches, reflecting a high

metabolic diversity (Das Sarma & Arora, 2002)6 ranging

from aerobic to anaerobic respiration and phototrophic

to heterotrophic nutrition (Ventosa et al., 2012). They

may use strategies to balance the osmotic pressure

accumulating organic solutes into cytoplasm and to

form biofilm with extracellular compounds containing

water (Decho et al., 2005; Roberts, 2005). Hypersaline

environments can be also inhabited by plants that have

evolved the capability to thrive on saline soils. For exam-

ple, haplotype of Phragmites australis, an invasive species

that increases its spatial distribution rapidly forming

dense colonies along lake shores, channels, rivers and

alkaline wetlands, have been found in salt environments

(Marks et al., 1994; G€usewell & Kl€otzli, 2000; Vasquez

et al., 2005). Phragmites australis is adapted to survive in

salty ecosystems through a downward transportation

mechanism that consists in limiting the entry of Na+ into

the shoots and the use of K+ to balance the osmotic pres-

sures in the leaves (Vasquez et al., 2005). Therefore, the

exudates released by roots also may modify the osmolar-

ity increasing the salt stress tolerance conferred to the

plant. These exudates, consisting in aminoacids, organic

acids, proteins and others compounds, also play an

important role in the organic input promoting the micro-

bial activity (Bais et al., 2003; Mayak et al., 2004) 7. The

ecological niche intimately influenced by roots exudates is

known as the rhizosphere and the above-mentioned phys-

icochemical alterations occurring within the root–sphere

are defined as the ‘rhizosphere effect’ (Antoun & Prevost,
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2005). Moreover, it can be demonstrated that the rhizo-

sphere effect is often species-specific. As a result, the same

plant species have the ability to shape a microbial com-

munity structure in a variety of differing soil types

(Smalla et al., 2001; Mengoni et al., 2004; Berg & Smalla,

2009). Although the effect of plant species and individuals

on their rhizobacteria has been investigated extensively,

especially as regards agricultural crops, very few studies

have as yet investigated the microbial communities asso-

ciated to roots of wild plants in hypersaline environments

(e.g. Mapelli et al., 2012)8 . To the best of our knowledge

there are no comparative studies focusing on the rhizo-

bacterial communities associated with submerged plants

in inland water sediments. Hence, the goals of our work

were: (1) to compare the microbiota associated to P. aus-

tralis in a hypersaline pond with the microbiota inhabit-

ing bulk sediments; (2) to assess which is the main factor,

the rhizosphere effect or saline stress, determining the

overall genetic structure and taxonomic diversity of

dwelling bacterial community.

Materials and methods

Study area

This study was conducted near Wuliangsuhai Lake in the

western part of Inner Mongolia Autonomous Region

(China) in 2011 June. Samples were collected in a hypers-

aline pond (40°470005″N, 108°420597″E,9 elevation

1019 m) with a surface area of about 70 m2, part of

which was covered with P. australis with a height of

about 1 m. At the time of our sampling, water flux was

completely motionless. Samples were taken in replicates

from five different zones of the pond: B74a, B74b and

B74c were collected from bulk sediments and R70a, R70b,

R71a R71b, R72a, R72b, R73a and R73b from the area of

the pond covered by P. australis (Table 1, Fig. 1). We

defined rhizosphere samples as the tightly adhering parti-

cles within 1–3 mm of the roots. Bulk soil replicates were

collected 2.5 m from P. australis. For all samples, 10 g

was collected and transferred into sterile tubes at 4 °C for

molecular analyses. Samples were immediately transported

to nearby laboratories to allow a fast DNA extraction.

The electrical conductivity (EC) of the sediments and pH

were measured using an Accumet AP85 pH (Fisher Scien-

tific Ltd., Pittsburgh, PA). EC is a parameter commonly

used to measure the salinity because of the positive corre-

lation with the salt concentration (Wollenhaupt et al.,

1986).

DNA extraction

The total DNA from 1 g (wet weight) of sediment was

extracted through PowerSoil� DNA Isolation Kit (MoBio,

Arcore, Italy) accordingly to the user manual. Quantifica-

tion of DNA was performed using the NanoVueTM Plus

spectrophotometer (GE Healthcare, NJ). All the reaction

templates were normalized to the same DNA concentra-

tion of 30 ng per reaction.

Automated ribosomal intergenic spacer

analysis

PCR reactions were carried out using primers ITSF and

6-FAM ITSReub, according to the chemical and thermal

amplification protocol of Cardinale et al. (2004). PCR

products were sent to STAB Vida Lda. (Caparica, Portu-

gal), which performed the capillary electrophoresis using

an ABI 310 genetic analyzer (Perkin-Elmer) with LIZ2500

as an internal size standard.

Fragment data were analyzed through PEAK SCANNER

Software v1.0 (Applied Biosystems) setting a threshold at

40 fluorescent units, i.e. three times more than the high-

est peak detected by a blank DNA-free control. Output

matrix was obtained as in Rees et al. (2004) 10. The matrix

was normalized and angular-transformed for statistical

analysis.

454 pyrotag sequencing

Genomic DNA was pooled at equal molar ratio according

to three groups identified through the ARISA-based

Table 1. Physical properties of the sediments

Parameter R70 R71 R72 R73 B74

EC (mS cm�1) 56.3 30.1 50.2 32.5 80.0

pHH2O
8.3 8.2 8.3 8.1 8.4

EC, electrical conductivity.

Fig. 1. 24Hypersaline pond and sampling scheme with the five

sampling points. Bulk sediment (B) and rhizosphere sediment (R).
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NMDS analysis: R7072 (R70a, R70b, R72a and R72b),

R7173 (R71a, R71b, R72a and R72b) and B7474 (B74a,

B74b and B74c) (Fig. 2). Samples were sent to Molecular

Research LP (MR DNATM). PCR amplification of environ-

mental 16S rRNA genes was performed using the

extracted DNA with a primer set amplifying the V4–V6

variable regions (primers 518F 50-CCAGCAGCYGCGGT

AAN-30 and 1046R 50-CGACRRCCATGCANCACCT-30).

Samples were sequenced using the Roche 454 GS-FLX

system, titanium chemistry, according to the protocols of

that company.

Sequences with length < 200 bp or with ambiguous

bases, and homopolymer runs exceeding 6 bp were

removed before chimera checking. A redundancy control

was performed, using a self-developed java script (https://

github.com/combogenomics/DeUniFier11 ), to obtain a sin-

gle file containing only unique sequences. The sequences

were then clustered using USEARCH (Edgar, 2010) with an

identity cutoff value of 90%. After this step, all the cen-

troid sequences were collected from the USEARCH output

and classified using the RDP CLASSIFIER (Wang et al., 2007).

A confidence threshold of 80% was used in order to

obtain only classification hits with high confidence.

FASTQ file sequences have been submitted to the EMBL/

NCBI/DDBJ Short Read Archive under accession nos.

ERS407985 (R7072), ERS407986 (R7173) and ERS407987

(B7474).

Statistical analysis

PAST and R software were used to perform the statistical

analysis respectively on ARISA and 454 pyrosequencing

data (Hammer et al., 2001; R Core Team, 2012). The

Chao1 index was calculated on metagenomic data assign-

ments considering only reads assigned to genus level. Rich-

ness was calculated on the normalized non-transformed

ARISA matrix. For the beta-diversity analysis, the trans-

formed ARISA matrix was used to perform a non-metric

multidimensional scaling (NMDS) using the Bray–Curtis

measure.

Results

Physical and chemical characterization of the

site

Sediment texture was a clayey soil with alkaline pH show-

ing similar values across the five sampling points

(Table 1). In contrast, we observed a variation in sedi-

ment electrical conductivity (EC), with a higher value in

the bulk sediments (B74). Among the rhizosphere sam-

ples we noticed that the electrical conductivity of R70

and R72 was higher than R71 and R73 (Table 1). Direct

observation indicated anaerobic conditions of the sedi-

ments, as inferred from their intense odor of hydrogen

sulfide and dark color (Reiffenstein et al., 1992).

Bacterial community structure and diversity

An average of 170.7 � 34.4 of peaks per sample was

found in ITS amplicons. The peak sizes ranged from 160

to 1200 bp. The lowest number of peaks was found in

B74c and B74a, with values of 98 and 115 12, respectively.

The highest values were found in R72b and in R70b, with

values of 207 and 198, respectively. The similarity was

found to be higher within the replicates of each sample

than between samples (ANOSIM, R = 0.87, P < 0.001). The

NMDS plot well separated microbial communities pat-

terns as indicated by the goodness of fit (0.09) of the

stress value for the ordination with two dimensions

(Clarke, 1993) 13. Three clusters were found: the first

(B7474) contained samples collected in bulk sediments

B74a, B74b and B74c; the second (R7072) contained sam-

ples collected in rhizospheres R70a, R70b R72a and R72b,

and the third group (R7173) samples collected in R71a,

R71b, R73a, R73b (Fig. 2). Taxa richness values were

Fig. 2.28 NMDS ordination plot based on ARISA

matrix for bacteria community rhizosphere

sediments (R) and bulk sediments (B).

Numbers indicate the sampling points and

lowercase letters the replicates. Richness

values and standard deviations are given for

ITS regions of the three clusters. The values

represent the cumulative averages for each

cluster with the standard deviation.
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higher in R7072 and R7173 (ANOVA, P < 0.01) than in

B7474 (Fig. 2).

The yield of the pyrosequencing run, after quality

checks, was of 7954, 4253 and 3437 pyrotags respectively

from R7072, R7173 and B7474. The number of unique

sequences obtained after the redundancy control step was

15 047 and the number of clusters acquired with the

USEARCH algorithm was 1169, with a mean of 13 sequences

per OTU. The Chao1 estimation indexes were 828.9

(R7072), 768.4 (R7173) and 717.1 (B7474). Rarefaction

curves showed that the three samples have a different

bacterial richness. In particular, the curve related to

R7072 tends to be flatter, indicating a lower richness level

than found for the other two samples (R7173 and B7474)

(Fig. 3).

The composition at phylum level was dominated, in all

the three clusters, by Proteobacteria (43% in R7173, 39%

in R7072 and 36% in B7474), Firmicutes (26% in R7173,

44% in R7072 and 30% in B7474), Bacteriodetes (24% in

R7173, 13% in R7072 and 20% in B7474), with lower

abundances of several other phyla (Fig. 4). Analyses at a

finer level revealed some differences among the samples.

In particular, Halanaerobiales were present in high abun-

dance in all samples (23% in R7072, 14% in R7173 and

12% in B7474; Fig. 5). Desulfosalsimonas was the second

most abundant group detected in the different clusters,

19% in R7173 and 11% in R7072, but it was rarer in

B7474 (3%).

Discussion

The similarity of the replicates in the different sampling

points confirmed the low variability of microbial commu-

nity structures when exposed to the same environmental

conditions. In contrast, bulk sediment samples grouped

separately from rhizosphere samples, which clustered in

distinctive couples (Fig. 2). We expected the bacterial

communities associated to rhizosphere to be very similar

Fig. 3. 25Rarefaction curves describing the

observed number 16S rRNA operational

taxonomic units (OTUs). Samples were pooled

according to the NMDS analysis on the ARISA

matrix (see Fig. 2).

Fig. 4. 26Bacterial classification using the RDP

classifier at phylum level. Phyla abundances

lower than 5% were shown as ‘others’

(Chloroflexi, Lentisphaerae, Actinobacteria,

Acidobacteria and Verrucomicrobia).
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in terms of structure, compared with samples from bulk

sediment. Indeed there are several reports of a plant spe-

cies-specificity of rhizobacterial communities. Plant root

exudates differ among species. As a consequence, micro-

bial communities differ according to the plant species

examined. Because of plant species-specificity, similar rhi-

zobacterial communities can be found in different envi-

ronments where the same plant is present (Smalla et al.,

2001; Berg & Smalla, 2009). A possible interpretation that

could explain this outcome is that in specific environ-

ments such as a hypersaline pond, the rhizosphere effect

has only a minor role in shaping its microbial community

structure. In such extreme environments other variables

could play a stronger role with respect to the biotic effect

of rhizosphere in selecting the microbial communities.

This hypothesis seems to be supported by similar findings

of a smaller influence of biotic interactions than of abi-

otic stresses on ecosystem functions in biological soil

crusts that have developed on desert soils (Li et al.,

2013). In our study we found that samples clustered

according to the different values of salinity. Salinity is

indeed one of the most important abiotic factors that

affect the shaping of microbial community composition

(Lozupone & Knight, 2007). To our knowledge the only

report concerning the rhizosphere effect in a hypersaline

environment was done by Mapelli et al. (2013). Those

authors14 found in rhizosphere of Salicornia sp. a higher

similarity among the rhizobacterial communities collected

in different hypersaline soils, showing that the composi-

tion of microbial communities was influenced more by

root activity than by soil composition. The lack of agree-

ment between such data on Salicornia sp. and our results

on P. australis could be linked to differences in soil tex-

ture characteristics (sand vs. clay), or more directly to the

different chemical exudate patterns of the two plant spe-

cies (Garbeva et al., 2004) 15. In the first case, Marschner

et al. (2001) demonstrated that microbial communities in

sandy soil and loam were affected more by root exudates

than were communities inhabiting clay matrices. They

hypothesized a dilution of the rhizosphere effect due to

the greater amount of clay particles adhering to root sur-

faces compared with sand and loam particles. In the sec-

ond case 16, it is well known how different plant species can

produce different exudation patterns, which have deep

consequences for the selection of the surrounding micro-

bial community composition and structure. Another

hypothesis to explain such differences can be derived by

the investigative techniques chosen: microbial communi-

ties of Salicornia sp. were analyzed through 16S rRNA

gene PCR and denaturing gradient gel electrophoresis

(DGGE), a technique with a lower resolution compared

with 16S-23S rRNA gene PCR and ARISA (Fisher & Trip-

lett, 1999; Cardinale et al., 2004). DGGE investigates a

microbial community at the genus/species level, depend-

ing on how much a taxonomic group has already been

studied phylogenetically, whereas ARISA, based on the

higher variable intergenic spacer region of ribosomal

operon, can investigate at the subspecies level (Daffonchio

et al., 1998, 2000; Brusetti et al., 2004), because even bac-

terial genomes usually harbor multiple ribosomal operons

(Johansen et al., 1996; Nubel et al., 1996). Consequently,

we found many more peaks than using a standard DGGE

electrophoretic gel, obtaining more information at a finer

resolution scale (Brusetti et al., 2004). Basically, at this

Fig. 5. 27RDP classification at a finer level: taxon name for each sample is shown on x-axis and the percentage of the reads on y-axis. Taxa

abundances lower than 1% were pooled and shown as ‘rare taxa’.
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scale, we can obtain semi-quantitative information on

rare bacterial subspecies, which are affected mostly by

even weak environmental changes.

Even though we observed that the rhizosphere played a

minor role in shaping the microbial community structure

in a similar way, we did found that it promoted richness

diversity (Fig. 2). Since about 40% of photosynthates of

plants are released into rhizosphere, it is not uncommon

to find a higher microbial density in such an ecological

niche (Egamberdieva et al., 2008; Berendsen et al., 2012).

Moreover, root exudates are also responsible for microbi-

ota chemotactical attraction from the surrounding root-

free soil to the rhizosphere (Bais et al., 2003).

We integrated the comparisons among the different

microbial communities structures with pyrosequencing

data to get a snapshot of the different taxon distribution

in the samples, information that it is not possible to

obtain through ARISA. Firmicutes and Proteobacteria

belonging to the subphylum Gamma were found to be

preponderant in the rhizosphere and bulk sediments, as

has also commonly been found in similar hypersaline

environments in China, such as in Sichuan province

(Xiang et al., 2008; Wen et al., 2009; Tang et al., 2011),

confirming the importance of these two taxa in the over-

all diversity of Chinese hypersaline environments (Fig. 3).

Due to the low level of oxygen in sediments it is not sur-

prising to find a considerable number of anaerobic halo-

philic bacteria such as Halanaerobiales. This order is

composed of microorganisms with an obligate anaerobic

fermentative or homoacetogenic metabolism (Fig. 4) that

is able to accumulate KCl in cytoplasm, instead of

organic solutes, to balance the osmotic pressure (Oren,

2008). Halanaerobiales has been detected in several hy-

persaline environments such as the Dead Sea, hypersaline

lakes in Tunisia, and salty ponds in France (Cayol et al.,

1994;17 Ollivier et al., 1994; Oren et al., 2005). Species of

the Desulfosalsimonas genus are commonly found in black

sulfide-containing hypersaline sediments and may grow

with NaCl concentrations of up to 100 g NaCl L�1 using

sulfate as terminal electron acceptor and producing

hydrogen sulfide (Kjeldsen et al., 2010). The major pres-

ence of sulfate-reducing bacteria in rhizosphere compared

with bulk sediments could be due to the presence of root

exudates and plant material (Fig. 4). Furthermore, the

microenvironments could be richer in sulfate compared

with the bulk sediment as there is evidence that the

P. australis root system can increase oxygen content in

the rhizosphere (Armstrong, 1992;18 Vlad�ar et al., 2008).

In conclusion, we observed a partially masked rhizo-

sphere effect probably because of softening by the high

salt concentrations of the hypersaline sediments. We can

deduce that in extreme environmental conditions, where

one or more ecological parameters reach the lower or the

upper limit for cellular life, these parameters are bigger

constraints in the shaping of bacterial communities.
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Salinity effects were more important in shaping bacterial communities than rhizosphere effects in the roots of Phragmites aus-

tralis (common reed) plants grown in a hypersaline pond.
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